
MY MASTER OF SOFTWARE ENGINEERING
PORTFOLIO

By

Esteban Guillen

B. S., Kansas State University, 2003

A PORTFOLIO

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SOFTWARE ENGINEERING

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, KS

2004

Approved by:

Major Professor
Dr. Scott DeLoach

ABSTRACT

The EMBT is a set of three tools that were created to support the Cooperative Robotics Simulator
research group that is headed by Dr. Scott DeLoach. The three tools consist of an object building tool,
a terrain building tool, and an environment building tool. The object building tool provides the ability
to create 3D shapes from the primitive shapes provided by Java 3D. The terrain building tool has the
ability to create large random surfaces for use in the robot simulator. While the environment building
tool combines the results of the object building and terrain builder into one file for the robot simulator
to use as the initial state of a simulation run.

 ii

TABLE OF CONTENTS

Chapter 1. Vision Document .. 1
Chapter 2. Project Plan ... 9
Chapter 3. Architecture Design .. 13
Chapter 4. Inspection Checklist.. 64
Chapter 5. Component Design.. 65
Chapter 6. XML Definition .. 101
Chapter 7. Software Quality Assurance ... 103
Chapter 8. Test Plan.. 106
Chapter 9. Assessment Evaluation ... 111
Chapter 10. User’s Manual... 114
Chapter 11. Project Evaluation... 129
References... 134

 iii

LIST OF FIGURES

Figure 1 EMBT Project Overview.. 2
Figure 2 Critical Use Cases... 3
Figure 3 Project Schedule ... 11
Figure 4 EMB Package View ... 14
Figure 5 EMB Application Package ... 14
Figure 6 EMBApplication Class Diagram.. 14
Figure 7 EMB Controller Package.. 15
Figure 8 EMBController Class Diagram .. 15
Figure 9 EMBBuildingSurfaceMouseHandler Class Diagram................................... 16
Figure 10 EMBObjectPropertiesWindow Class Diagram .. 16
Figure 11 EMB View Package ... 16
Figure 12 EMBView Class Diagram .. 17
Figure 13 EMBThreeDimensionalView Class Diagram .. 17
Figure 14 EMBXMLView Class Diagram ... 17
Figure 15 EMBDrawingView Class Diagram .. 18
Figure 16 EMBTerrainPreview Class Diagram.. 18
Figure 17 EMBTerrainFinder Class Diagram... 18
Figure 18 EMBTerrainView Class Diagram .. 19
Figure 19 EMBObjectPreview Class Diagram... 19
Figure 20 EMBObjectFinder Class Diagram.. 20
Figure 21 EMBObjectView Class Diagram ... 20
Figure 22 EMBBuildingSurface Class Diagram... 20
Figure 23 EMB Model Package.. 21
Figure 24 EMBModel Class Diagram .. 21
Figure 25 EMBEnvironment Class Diagram.. 22
Figure 26 EMBObject Class Diagram .. 23
Figure 27 EMBBasicShape Class Diagram .. 24
Figure 28 EMBBox Class Diagram .. 24
Figure 29 EMBCone Class Diagram .. 25
Figure 30 EMBSphere Class Diagram.. 25
Figure 31 EMBCylinder Class Diagram... 25
Figure 32 EMBTerrain Class Diagram... 26
Figure 33 EMBObjectLibrary Class Diagram .. 26
Figure 34 EMBTerrainLibrary Class Diagram... 27
Figure 35 Sequence Diagram for Opening an Environment....................................... 27
Figure 36 Sequence Diagram for Adding a Terrain.. 28
Figure 37 Sequence Diagram for Adding an Object... 28
Figure 38 EOB Package View .. 29
Figure 39 EOB Application Package.. 29
Figure 40 EOBApplication Class Diagram... 29
Figure 41 EOB Controller Package .. 30
Figure 42 EOBController Class Diagram... 31
Figure 43 EOBBoxPropertiesWindow Class Diagram... 32
Figure 44 EOBConePropertiesWindow.. 33

 iv

Figure 45 EOBCylinderPropertiesWindow Class Diagram 34
Figure 46 EOBFrontMouseHandler Class Diagram... 34
Figure 47 EOBSideMouseHandler Class Diagram... 35
Figure 48 EOBSpherePropertiesWindow Class Diagram .. 35
Figure 49 EOBTopMouseHandler Class Diagram ... 35
Figure 50 EOB View Package .. 36
Figure 51 EOBView Class Diagram... 36
Figure 52 EOBThreeDimensionalView Class Diagram... 37
Figure 53 EOBDrawingView Class Diagram... 37
Figure 54 EOBXMLView Class Diagram.. 37
Figure 55 EOBSideDrawingView Class Diagram.. 38
Figure 56 EOBFrontDrawingView Class Diagram .. 38
Figure 57 EOBTopDrawingView Class Diagram .. 38
Figure 58 EOBObjectPreview Class Diagram.. 39
Figure 59 EOBObjectFinder Class Diagram .. 39
Figure 60 EOBObjectView Class Diagram .. 40
Figure 61 EOB Model Package .. 40
Figure 62 EOBModel Class Diagram... 41
Figure 63 EOBObject Class Diagram... 41
Figure 64 EOBBasicShape Class Diagram... 42
Figure 65 EOBBox Class Diagram... 43
Figure 66 EOBCone Class Diagram... 44
Figure 67 EOBSphere Class Diagram .. 45
Figure 68 EOBCylinder Class Diagram ... 46
Figure 69 EOBObjectLibrary Class Diagram... 46
Figure 70 Sequence Diagram for Moving a Box.. 47
Figure 71 ETB Package View... 48
Figure 72 ETB Application Package .. 48
Figure 73 ETBApplication Class Diagram... 48
Figure 74 ETB Controller Package... 48
Figure 75 ETBController Class Diagram ... 49
Figure 76 ETB View Package... 50
Figure 77 ETBView Class Diagram ... 50
Figure 78 ETBThreeDimensionalView Class Diagram ... 51
Figure 79 ETBXMLView Class Diagram .. 51
Figure 80 ETBDrawingView Class Diagram ... 51
Figure 81 ETBBuildingSurface Class Diagram.. 52
Figure 82 ETBTerrainPreview Class Diagram... 52
Figure 83 ETBTerrainFinder Class Diagram.. 53
Figure 84 ETBTerrainView Class Diagram ... 53
Figure 85 ETB Model Package... 53
Figure 86 ETBModel Class Diagram ... 54
Figure 87 ETBTerrain Class Diagram .. 55
Figure 88 ETBTerrainLibrary Class Diagram .. 55
Figure 89 Sequence Diagram for Modifying the Terrain ... 56
Figure 90 EMB Package View ... 66

 v

Figure 91 EMBApplication Class Diagram.. 66
Figure 92 EMBController Class Diagram .. 67
Figure 93 EMBBuildingSurfaceMouseHandler ... 67
Figure 94 EMBObjectPropertiesWindow Class Diagram .. 68
Figure 95 EMBView Class Diagram .. 68
Figure 96 EMBThreeDimensionalView Class Diagram .. 69
Figure 97 EMBXMLView Class Diagram ... 69
Figure 98 EMBDrawingView Class Diagram .. 69
Figure 99 EMBTerrainPreview Class Diagram.. 70
Figure 100 EMBTerrainFinder Class Diagram... 70
Figure 101 EMBTerrainView Class Diagram .. 71
Figure 102 EMBObjectPreview Class Diagram... 71
Figure 103 EMBObjectFinder Class Diagram.. 72
Figure 104 EMBObjectView Class Diagram ... 72
Figure 105 EMBBuildingSurface Class Diagram... 72
Figure 106 EMBModel Class Diagram .. 73
Figure 107 EMBEnvironment Class Diagram.. 73
Figure 108 EMBObject Class Diagram .. 74
Figure 109 EMBBasicShape Class Diagram .. 75
Figure 110 EMBBox Class Diagram .. 75
Figure 111 EMBCone Class Diagram .. 76
Figure 112 EMBSphere Class Diagram.. 76
Figure 113 EMBCylinder Class Diagram... 76
Figure 114 EMBTerrain Class Diagram... 77
Figure 115 EMBObjectLibrary Class Diagram .. 77
Figure 116 EMBTerrainLibrary Class Diagram... 78
Figure 117 EOB Package View .. 78
Figure 118 EOBApplication Class Diagram... 79
Figure 119 EOBController Class Diagram... 79
Figure 120 EOBBoxPropertiesWindow Class Diagram... 80
Figure 121 EOBConePropertiesWindow Class Diagram... 81
Figure 122 EOBCylinderPropertiesWindow Class Diagram 82
Figure 123 EOBFrontMouseHandler Class Diagram... 82
Figure 124 EOBSideMouseHandler Class Diagram... 83
Figure 125 EOBSpherePropertiesWindow Class Diagram .. 83
Figure 126 EOBTopMouseHandler Class Diagram ... 83
Figure 127 EOBView Class Diagram... 84
Figure 128 EOBThreeDimensionalView Class Diagram... 84
Figure 129 EOBDrawingView Class Diagram... 85
Figure 130 EOBXMLView Class Diagram.. 85
Figure 131 EOBSideDrawingView Class Diagram.. 85
Figure 132 EOBFrontDrawingView Class Diagram .. 86
Figure 133 EOBTopDrawingView Class Diagram .. 86
Figure 134 EOBObjectPreview Class Diagram.. 86
Figure 135 EOBObjectFinder Class Diagram .. 87
Figure 136 EOBObjectView Class Diagram .. 87

 vi

Figure 137 EOBModel Class Diagram... 88
Figure 138 EOBObject Class Diagram... 88
Figure 139 EOBBasicShape Class Diagram... 89
Figure 140 EOBBox Class Diagram... 90
Figure 141 EOBCone Class Diagram... 91
Figure 142 EOBSphere Class Diagram .. 92
Figure 143 EOBCylinder Class Diagram ... 93
Figure 144 EOBObjectLibrary Class Diagram... 93
Figure 145 ETB Package View... 94
Figure 146 ETBApplication Class Diagram... 94
Figure 147 ETBController Class Diagram ... 95
Figure 148 ETBView Class Diagram ... 95
Figure 149 ETBThreeDimensionalView .. 96
Figure 150 ETBXMLView Class Diagram .. 96
Figure 151 ETBDrawingView Class Diagram ... 97
Figure 152 ETBBuildingSurface Class Diagram.. 97
Figure 153 ETBTerrainPreview Class Diagram... 98
Figure 154 ETBTerrainFinder .. 98
Figure 155 ETBTerrainView Class Diagram ... 99
Figure 156 ETBModel Class Diagram ... 99
Figure 157 ETBTerrain Class Diagram .. 100
Figure 158 ETBTerrainLibrary Class Diagram .. 100
Figure 159 Creating a New Object ... 115
Figure 160 Selecting a Shape from the Library.. 116
Figure 161 Adding a Cone Shape ... 117
Figure 162 Cone Properties Windw.. 118
Figure 163 Modifying a Cone... 119
Figure 164 Viewing the Cone in 3D... 120
Figure 165 Creating a New Terrain .. 121
Figure 166 Modifying a Terrain ... 122
Figure 167 Viewing the Terrain in 3D.. 123
Figure 168 Adding a Terrain from the Library... 124
Figure 169 Creating a New Envirnment Model.. 125
Figure 170 Selecting a Object and Terrain ... 126
Figure 171 Object Properties Window ... 126
Figure 172 Viewing an Environment in 3D.. 127
Figure 173 Zooming-in from the 3D View... 128
Figure 174 Phase Time Breakdown.. 131
Figure 175 Phase 1 Breakdown .. 131
Figure 176 Phase 2 Breakdown .. 132
Figure 177 Phase 3 Breakdown .. 132

 vii

LIST OF TABLES

Table 1 Work Breakdown Structure ... 11
Table 2 Technical Inspection Checklist .. 64
Table 3 Test Case Result Summary .. 111
Table 4 Project Duration... 130

 viii

Chapter 1. Vision Document

Introduction

Motivation
The concept for the Environment Model Building Tool (EMBT) was driven from the need to
dynamically build 3D graphical environment models for the Cooperative Robotics Simulator
(CRS). The original CRS hard coded the environment model and had no way to store and reuse
the environment models. The EMBT will be an independent tool that allows the user to
interactively create and save graphical 3D environment models for the CRS to use.

Cooperative Robotics Simulator
The CRS is a new research group at Kansas State University and is headed by Dr. DeLoach. The
purpose for creating the group was to build a cooperative robotics simulator that could simulate a
large number of autonomous robots working in a virtual environment. The CRS group is currently
broken up into five components; Environment Simulator, Simulator Control Panel, 3D
Environment Display, Environment model Building Tool, and Robot Simulator.

Environment Simulator
The Environment Simulator is the central component of the entire system. It is responsible for
keeping track of the state of the virtual environment, including each robot. The Environment
Simulator is also the main interface of the EMBT.

Simulator Control Panel
The Simulator Control Panel will connect to the Environment Simulator to monitor and control the
current simulation.

3D Environment Display
The 3D Environment Display will be used to display the virtual environment in 3D. The 3D
Environment Display will get all its viewing information from the Environment Simulator.

Environment Model Building Tool
The Environment Model Building Tool will be used to create 3D environment models for the
Environment Simulator. The models will be in the form of a XML file.

Robot Simulator
The Robot Simulator will simulate the actions of various kinds of robots. It will communicate
with the Environment Simulator to update sensor readings and location changes.

 1

Project Overview

Figure 1 EMBT Project Overview

Introduction
Figure 1 shows, at a high level, how the EMBT will interface with and effect other components of
the CRS. The EMBT will provide an XML file to the Environment Simulator. The XML file will
describe the objects and the terrain which represents the environment model. The objects will be
described as a collection of primitive shapes (boxes, spheres, cones, and cylinders). The terrain
will be described as a collection of polygons connected in a mesh. The objects and terrain will
have attributes that add details to their physical make up.

The XML file describes the initial state of the environment in the CRS. The Environment
Simulator will parse the XML file and send the 3D Environment Display (3DED) messages which
describe the initial state. After the 3DED has received the initial state from the Environment
Simulator the XML file is no longer used in the current simulation run.

The EMBT will provide a 2D perspective to build objects and terrains. The tool will also provide a
3D perspective to view objects, terrains and environment models. From the 3D perspective the
user will be able to navigate through the scene by mouse movements. The final perspective will
be able to view the XML code for the objects and terrains.

Goal
To provide a tool that can allow a user to build and reuse 3D environment models.

Purpose
To improve on the current method of building, reusing, and describing environment models.

Requirements Specification
The requirements specification will describe all the features that the EMBT will have. The
features will be identified by a specific requirement (SR). SR’s can be tagged as “Critical” or

Environment
Simulator

Environment
Models
(XML files)

EMBT

Load XML file Save XML file

Initialize Environment Load XML file

3D Environment
Display

 2

“Future”. Critical SR’s are one that are considered most important and will be the focus during
implementation. Future SR’s are one that are not vital for the system to run and will be
implemented if time permits, otherwise a future developer will implement them.

Critical Use Cases

Figure 2 Critical Use Cases

 3

Use Case: Build Environment Models
Description: This use case describes constructing the environment model from a 2D perspective.
Includes: Import Object(s), Import Terrain(s)
Pre-Conditions: There must be environment objects and environment terrains saved to disk. The
user is in the environment model building mode.
Details: The user will build environment models from environment objects and environment
terrains. The user will have a window, to place environment objects and environment terrains, for
building the environment model. The user will select either an object or terrain from a preview
window and place it on the window surface. There will be a preview window for both objects and
terrains. The object preview window will list all available objects in a hierarchical structure and
allow the user to select an object to preview. A selected object will be displayed in 3D on the
preview window. The selected object can then be place in the model building window. The
terrain preview window will function in same way as the object preview window. Once the object
or terrain has been placed on the window surface it can be resized, moved, and rotated with the use
of the mouse. Each object and terrain will also have its own properties window that the user can
pull up to modify attributes values for the object or terrain. The user will also be able to zoom in
and out of the window. Objects and terrains that are modified from the properties window can be
saved as new objects and terrains. A group of objects can also be selected and saved as a new
object (for example a group of houses could be saved as a city block).
Post-Conditions: An environment model is constructed and is ready to be saved.
Specific Requirements:

SR1 [Critical Requirement]
The system shall provide a 2D graphical user interface to build environment models.

SR2 [Critical Requirement]
The system will allow the user to build environment models from environment objects and
environment terrains.

SR3
The system will allow the user to specify camera locations in the environment model. There will
be a default camera with a top down view pointing a location (0,0,0).

SR4
The system will allow the user to specify light source locations in the environment model. There
will be a default light source to represent the sun.

SR5
The system will provide a zoom-in and zoom-out feature for the environment model building
graphical user interface.

SR5.1
The system will provide an object preview window for listing and viewing available objects from
the object database.

SR5.2
The system will provide a terrain preview window for listing and viewing available terrains from
the object database.

SR5.3
The object preview window will allow the user to select an object from a list and view it in 3D.

 4

SR5.4
The terrain preview window will allow the user to select a terrain from a list and view it in 3D.

SR5.5 [Future Requirement]
The system will allow the user to select objects from the window surface and save the group as a
new object. The object will be saved to the object database.

SR5.6 [Future Requirement]
The system will allow the user to save objects, which have been modified from the properties
window, as new objects to the object database.

SR5.7 [Future Requirement]
The system will allow the user to save terrains, which have been modified from the properties
window, as new terrain objects to the terrain database.

Use Case : Build Environment Terrains
Description: This use case describes building environment terrains from a 2D perspective.
Includes: Modify Elevation, Set Terrain Properties, Save to Terrain Database
Pre-Conditions: The user is in the environment terrain building mode.
Details: The user will be provided with a window to create the terrain. The window will initially
have a flat surface. The user will be able to select regions of the surface and modify the elevation
for the selected regions. Modifying the elevation will be controlled by mouse actions. A color
coding will be used to provide visual feedback about the elevation changes. Black will represent
the lowest elevations and white will represent the highest elevations. The user will be able to
specify different terrain properties, from a properties window, for a selected region. The
properties will include things such as grassy surfaces, rocky surfaces, water surfaces, sand
surfaces, forest surfaces, and dirt surfaces. The user will also be able to zoom in and out of the
window. The user will be able to save the terrain to the terrain database.
Post-Conditions: When the user is done creating the terrain it saved to the terrain database.
Specific Requirements:

SR6 [Critical Requirement]
The system shall provide a 2D graphical user interface to build environment terrains

SR7
The system will allow the user to build environment terrains by selecting regions of an initially
flat surface and then modifying the elevation.

SR8 [Critical Requirement]
The system will allow the user to save environment terrains to the terrain database.

SR9
The system shall provide a property window for each section of an environment terrain. The
property window will allow the user to modify the physical attributes of the environment terrain.

SR10
Physical attributes for environment terrains will include color, dimensions, reflection properties,
location, friction, temperature and the type of surface. The type of surface will include grassy
surfaces, rocky surfaces, water surfaces, sand surfaces, forest surfaces, and dirt surfaces

 5

SR11
The system will provide a zoom-in and zoom-out feature for the environment terrain building
graphical user interface.

Use Case: Build Environment Objects
Description: This use case describes building environment objects in a 2D perspective.
Includes: Draw Primitive(s), Use Saved Object(s), Resize, Move, Rotate, Set Object Properties,
Save To Object Database.
Pre-Conditions: The user is in the object building mode.
Details: The user will be provided with a window to create the object. Environment objects will
be constructed from cube, cone, cylinder, and sphere primitive shapes as well as existing objects.
The user will draw primitive shapes on the window. The user will also be able to use an existing
object from the database of objects and place it in the window. An existing object will have all its
primitive shapes placed in the window when selected. Once the shapes are drawn on the window
the user can resize, move, and rotate them with the mouse. Each primitive shape will have a
properties window that the user can use to modify attribute values of the shape. The user will also
be able to zoom in and out of the window.
Post-Conditions: When the user is done creating the new object it can be saved to disk.
Specific Requirements:

SR12 [Critical Requirement]
The system shall provide a 2D graphical user interface to build environment objects.

SR13 [Critical Requirement]
The system will allow the user to build environment objects from the following Java 3D primitive
shapes; Cones, Spheres, Cylinders, and Boxes.

SR13.1
The system will allow the user to build environment objects from existing objects in the object
database. When an existing object is selected its primitive shapes will be placed in the window.

SR14 [Critical Requirement]
The system will allow the user to save environment objects the object database.

SR15
The system shall provide a property window for each environment object. The property windows
will allow the user to modify the physical attributes of the environment object.

SR16
Physical attributes for environment objects will include weight, color, dimensions, reflection
properties, temperature, location, friction, and rotations.

SR17
The system will allow the user to resize environment objects with the mouse.

SR18
The system will allow the user to move the location of environment objects with the mouse.

SR18.1 [Future Requirement]
The system will allow the user to rotate an object with the mouse.

 6

SR19
The system will provide a zoom-in and zoom-out feature for the environment object building
graphical user interface.

Use Case: View in 3D
Description: This use case describes viewing a model, object or terrain in 3D.
Pre-Conditions: There user must be in model building, object building or terrain building mode.
Details: The user will be provided with a window for viewing in 3D. The window will provide a
3D representation of the 2D building perspective. The user will be able to rotate the scene about
the x, y, and z axis with mouse movements. The user will also be able to zoom in and out with
mouse and keyboard actions.
Post-Conditions: None
Specific Requirements:

SR20
The system will allow the user to view environment objects from a 3D perspective.

SR21
The system will allow the user to view environment terrains from a 3D perspective.

SR22
The system will allow the user to view environment models from a 3D perspective.

SR23
The system will allow the user to navigate through 3D perspectives with mouse movements.

Use Case: Save Model To XML
Description: This use case describes exporting XML representations of the environment model.
Pre-Conditions: There must be an environment model to export.
Details: There will be a menu item to either export or import the environment model. Both
imported and exported files will be in XML format and will describe the objects and terrains
included in the environment. When exporting an environment model the user will be provided
with a window to name the XML file. When importing an environment model the user will be
provided with a widow to select a XML file.
Post-Conditions: There will be a new file saved to disk.
Specific Requirements:

SR24 [Critical Requirement]
The system will allow the user to save the environment model to an XML format.

SR25 [Critical Requirement]
The system will be required to comply with a DTD for the XML file produced when saving the
environment model. The Environment Simulator will determine the DTD specification. The DTD
file will continually be evolving as the project progresses. A sample of the current DTD will be
provided in the DTD Description Document.

Use Case: Load Saved Model
Description: This use case describes loading environment models.
Pre-Conditions: There must be an environment model to load.
Details: There will be a menu item to import the environment model. Imported files will be in
XML format and will describe the objects and terrains included in the environment. When
importing an environment model the user will be provided with a widow to select a XML file.
Post-Conditions: The user will be in the environment building mode as described in Use Case 1.

 7

Specific Requirements:

SR26 [Critical Requirements]
The system will allow the user to open and edit saved environment models.

Use Case: Import Object(s)
Description: This use case describes loading environment objects into the environment model.
Includes: Search Object Database.
Pre-Conditions: There must be environment objects saved to disk. At a minimum the Java 3D
primitive shapes (cone, box, sphere, and cylinder) will be provide. The user must be in
environment building mode.
Details: The user will select environment objects from a menu. The user can then draw the
environment object on the window provided by Use Case 1.
Post-Conditions: The object will be added to the environment model.
Specific Requirements: SR7 from use case 1.

Use Case: Import Terrain(s)
Description: This use case describes loading environment terrains into the environment model.
Includes: Search Terrain Database.
Pre-Conditions: There must be environment terrains saved to disk. At a minimum a flat surface
will be provided. The user must be in environment building mode.
Details: The user will select environment objects from a menu. The user can then draw the
environment terrain on the window provided by Use Case 1.
Post-Conditions: The object will be added to the environment model.
Specific Requirements: SR7 from use case 1

Assumptions
The user has a JVM 1.3.1 or later and Java 3D 1.3.1 or later installed.

The user should have a graphics card that supports OpenGL.

The user will need a 1.6GHz processor or better.

The user will need 512MB of system memory.

Constrains
The DTD file provided by the Environment Simulator will determine the structure of the XML file
produced when saving the environment model.

Java is not the most efficient language for 3D and 2D graphics, so speed will be a constant issue.

Building 3D objects in a 2D view has limited capabilities.

Environment
The EMBT will be written in Java and compiled with the JDK 1.4.2 and Java 3D 1.3.1.

Eclipse will be the development environment.

The EMBT will be tested under Windows XP, Linux, and Solaris.

Version control will be handled by CVS.

 8

Chapter 2. Project Plan

Task Breakdown

Inception Phase
The inception phase is focused on defining the requirements for the project. A vision document
will be developed to provide an overview of the project and to document requirements. A project
plan will be developed to provide an estimate of the work load and give a schedule for completing
project tasks. A software quality assurance plan will be created to describe the required
documentation and the steps taken to ensure a quality product is produced.

The development of a prototype will also take place during the inception phase. The prototype is
designed to show the feasibility of the project.

The inception phase is complete when the developer presents all required documentation and the
committee members approve.

Elaboration Phase
The elaboration phase is focused on design issues. Revisions of documents from the inception
phase will be completed at the committee members’ request. A formal requirements specification
will be developed for a component of the project. An architecture design will be developed to
describe the system. A test plan will be developed to describe how testing will be performed and
reported. The technical inspectors will review the architecture design and report on their findings.
Finally another prototype will be developed to demonstrate some of the more challenging product
features.

The elaboration phase is complete when the developer presents all required documentation and the
committee members approve.

Production Phase
The production phase is focused on implementation and testing. The developer will produce a
component design to describe the system at a low level. Most the developer’s time will be spent
on developing the code. The code will be well documented and unit testing will be performed.
The code will be tested to ensure all the requirements are meet. All tests results will be evaluated
and documented. The developer will also write a complete user manual which describes how to
install and use the software.

The production phase is complete when the developer presents all required documentation,
demonstrates the final project, and the committee members approve.

Architecture Elaboration Plan
The following items must be complete before the second presentation is made.

Revision of Vision Document
Changes to the requirements or project scope since the first presentation must get updated in the
vision document.

Revision of Project Plan
Changes to the schedule of the project must be updated in the project plan. The time and cost
estimates will be revised using a bottom-up approach based on project progress. There will also
be an Implementation Plan section added to the Project Plan document.

 9

Architecture Design
The developer must have a strong understanding about how to build the system. All interfaces
will be defined and UML diagrams will be used.

Development of Prototype
The prototype will demonstrate the critical requirements (defined in the Vision document) to
demonstrate they can be implemented.

Test Plan
A test plan will document the tests that are to be performed to ensure the requirements are meet.

Formal Technical Inspections
The architecture design will be inspected by Cem Oguzhan and Kevin Sung. Both inspectors will
produce a report on their inspection findings.

Formal Requirements Specification
At least one part of the project will be formally specified using a methodology such as OCL. I
will formally specify the relationship between the terrain and objects. For example I will specify
that objects should rest on surface of the terrain instead of floating in mid air. Also I will specify
some uniqueness properties for the database part of the system.

Cost Estimate (based on current progress)
The project is now at the end of the Elaboration Phase. According to the time log I have spent 152
hours on the project. I have spent 90 hours coding/debugging/testing and 62 hours documenting.
The prototype for the project has 1200 SLOC and it implements about 25% of the required
features. From this data the following metrics can be calculated.

1200 SLOC / 90 hours = 13.3 SLOC/hour (productivity)

1200 SLOC / .25 = 4800 SLOC (total SLOC)

The above calculations show that my productivity was 13.3 SLOC/hour and that there is about
4800 SLOC required for the project. There will be 3600 SLOC left for development. The
following calculation estimates how much time will be required for the rest of the code
development.

(3600 SLOC)/ 13.3 SLOC/hour = 270.7 hours (total remaining development time)

(270.7 hours) / 7 hours/day = 39 days

I would estimate that the remaining documentation will take about 56 hours (8 days). This would
make the total time required for the rest of the project about 47 days. At a high level I will break
down those days as follows:

Coding/Debugging – 30 days
Testing – 9 days
Documentation – 8 days

The Implementation Plan will provide a detailed WBS.

 10

The Gantt chart below gives a schedule for the remainder of the project.

Figure 3 Project Schedule

Implementation Plan

Deliverables
The following are the deliverables for presentation three.

Action Items
User Manual
Component Design
Source Code
Assessment Evaluation
Project Evaluation
References
Formal Technical Inspection Letters

Work Breakdown Structure
The follow table breaks down the deliverables into tasks and lists the completion criteria and cost
for each task.

Table 1 Work Breakdown Structure

Deliverable Tasks Completion
Criteria

Time Cost

Develop EOB
Application
Package

Executable code June 10 1 day Source
Code

Develop EOB
Controller
Package

Executable code June 10 – June 16 5 days

 11

Develop EOB
Model Package

Executable code June 11 – June 18 6 days

Develop EOB
View Package

Executable code June 11 – June 25 11 days

Develop ETB
Application
Package

Executable code June 18 1 day

Develop ETB
Controller
Package

Executable code June 21 – June 23 3 days

Develop ETB
View Package

Executable code June 21 – June 25 5 days

Develop ETB
Model Package

Executable code June 22 – June 28 5 days

Develop EMB
Application
Package

Executable code June 30 1 day

Develop EMB
Controller
Package

Executable code July 1- July 6 4 days

Develop EMB
View Package

Executable code July 5 – July 14 8 days

Develop EMB
Model Package

Executable code July 6 – July 15 8 days

Run Test Cases All test cases are
run

July 16 – July 21 4 days Assessment
Evaluation

Document Results All results from
each test case
have been
evaluated and
documented

July 22 – July 28 9 days

Action
Items

Document Effort
in Completing
Action Items

All action items
from presentation
2 have been
addressed

July 29 1 day

Component
Design

Document EOB
Design

All major features
of the EOB have
been documented
with UML and
JavaDoc

July 30 1 day

 12

Document ETB All major features
of the ETB have
been documented
with UML and
JavaDoc

August 2 1 day

Document EMB All major features
of the EMB have
been documented
with UML and
JavaDoc

August 3

Document How to
Install

Approved by
Major Professor

August 3 1 day

Document How to
use EOB

Approved by
Major Professor

August 4 1 day

Document How to
Use ETB

Approved by
Major Professor

August 5 1 day

User
Manuel

Document How to
Use EMB

Approved by
Major Professor

August 6 1 day

Document
Usefulness of
Methodologies

Approved by
Major Professor

August 6 1 day

Document
Accuracy of
Estimates

Approved by
Major Professor

August 7- August
8

2 days

Project
Evaluation

Document
Usefulness of
Reviews

Approved by
Major Professor

August 9 1 day

References All References
Documented

Approved by
Major Professor

August 9 1 day

Formal
Technical
Inspection
Letters

Received Letters
from Technical
Inspectors

Approved by
Major Professor

August 9 1 day

Chapter 3. Architecture Design

Introduction
This document will provide brief descriptions and class diagrams of the applications and classes
for the EMBT.

 13

Environment Model Builder
The Environment Model Builder is a graphical tool to create an environment from a terrain and
objects. The tool will have a building surface to place the terrain and objects. The user will be
able to move the objects to the desired location. There will also be a three dimensional view to
observer what the terrain and objects look like in 3D. The following sections will describe the
different packages of the Environment Model Builder in detail.

Package View

EMB Application

EMB Controller

EMB View

EMB Model

Figure 4 EMB Package View

Application Package

EMBApplication

Figure 5 EMB Application Package

Class Descriptions and Diagrams

EMBApplication
This class is just intended to have the main method for this program and create the EMBController
and set it visible.

Figure 6 EMBApplication Class Diagram

 14

Controller Package

EMBObjectPropertiesWindow

EMBController EMBBuildingSurfaceMouseHandler

Figure 7 EMB Controller Package

Class Descriptions and Diagrams

EMBController
This class is the main frame of the application. It will handle all the menu item actions. It is
responsible for loading files, saving files to disk, and saving EMBEnvironments to the library.

Figure 8 EMBController Class Diagram

EMBBuildingSurfaceMouseHandler
This class is responsible for handling mouse events for the building surface. In particular it will
wait for mouse clicks and determine if one of the objects was clicked on. If an object is clicked on
it will provide a properties window for that object.

 15

Figure 9 EMBBuildingSurfaceMouseHandler Class Diagram

EMBObjectPropertiesWindow
This class provides the properties window for an object. It will provide controls to move the
object to a new location.

Figure 10 EMBObjectPropertiesWindow Class Diagram

View Package

EMBBuildingSurface

EMBThreeDimensionalView

EMBView

1
+threeD

1
EMBXMLView1

+xml

1

EMBTerrainFinder

EMBTerrainPreview

1+finder 1

EMBTerrainView

1+view 1

EMBDrawingView

1+builder 1

1+canvas 1

1 +terrainPrev1

EMBObjectFinder

EMBObjectPreview
1
+objectPrev

1

1
+finder

1

EMBObjectView

1
+view

1

Figure 11 EMB View Package

Class Descriptions and Diagrams

EMBView
This class is a container for the EMBThreeDimensionalView, EMBDrawingView, and
EMBXMLView.

 16

Figure 12 EMBView Class Diagram

EMBThreeDimensionalView
This class will show the three dimensional view of the current EMBEnvironment. From this view
the user will be able to view the EMBEnvironment from any angle.

Figure 13 EMBThreeDimensionalView Class Diagram

EMBXMLView
This class is responsible for displaying the XML definition of the current EMBEnvironment. The
XML will represent the contents that will be saved to disk.

Figure 14 EMBXMLView Class Diagram

 17

EMBDrawingView
This class is a container for the EMBBuildingSurface, EMBTerrainPreview, EMBObjectPreview.

Figure 15 EMBDrawingView Class Diagram

EMBTerrainPreview
This class is a container for the EMBTerrainFinder and EMBTerrainView. It will also add the
currently selected EMBTerrain to the EMBModel.

Figure 16 EMBTerrainPreview Class Diagram

EMBTerrainFinder
This class is responsible for providing a list of all available EMBTerrains in the
EMBTerrainLibrary for the user to select.

Figure 17 EMBTerrainFinder Class Diagram

 18

EMBTerrainView
This class is responsible for providing a thumb-nail view of the currently selected EMBTerrain.

Figure 18 EMBTerrainView Class Diagram

EMBObjectPreview
This class is a container for the EMBObjectFinder and EMBObjectView. It will also add the
currently selected EMBObject to the EMBBuildingSurface and EMBModel.

Figure 19 EMBObjectPreview Class Diagram

EMBObjectFinder
This class is responsible for providing a list of all available EMBObjects in the
EMBObjectLibrary for the user to select.

 19

Figure 20 EMBObjectFinder Class Diagram

EMBObjectView
This class is responsible for providing a thumb-nail view of the currently selected EMBObject.

Figure 21 EMBObjectView Class Diagram

EMBBuildingSurface
This class is responsible for displaying the top 2-D view of the current EMBEnvironment. From
this view the user will be able arrange the objects and terrains that have been added to it. This
view will also allow for removal of terrains and objects.

Figure 22 EMBBuildingSurface Class Diagram

 20

Model Package

EMBCone

EMBCylinder

EMBSphere

EMBBox

EMBObjectLibrary

EMBBasicShape

EMBEnvironmentLibrary

EMBModel EMBObject

11..n 1

+objects

1..n
1

1..n

1

+shapes1..n

EMBEnvironment

1

1..n

1

+environments 1..n

1 11

+environment

1 n

1..n

n +objects

1..n

EMBTerrainLibrary

EMBTerrain

n

1

n

+terrain 1

1

1..n

1

+terrains 1..n

Figure 23 EMB Model Package

Class Descriptions and Diagrams

EMBModel
This class is responsible for holding the current EMBEnvironment that is being built and making it
available to other classes.

Figure 24 EMBModel Class Diagram

EMBEnvironment
This class represents the current environment that is being built. It will be composed of numerous
EMBTerrains and EMBObjects. It will also be responsible for building its XML definition.

 21

Figure 25 EMBEnvironment Class Diagram

EMBObject
This class is a collection of EMBBasicShapes that are to be used in the EMBEnvironment. It is
also responsible for building its XML definition.

 22

Figure 26 EMBObject Class Diagram

EMBBasicShape
This class is the super class for the primitive shapes; EMBBox, EMBCone, EMBSphere, and
EMBCylinder. It is responsible for building the XML definition for the primitive shapes.

 23

Figure 27 EMBBasicShape Class Diagram

EMBBox
This class represents a box shape. It holds all the information necessary to represent a three
dimensional box shape.

Figure 28 EMBBox Class Diagram

 24

EMBCone
This class represents a cone shape. It holds all the information necessary to represent a three
dimensional cone.

Figure 29 EMBCone Class Diagram

EMBSphere
This class represents a sphere shape. It holds all the information necessary to represent a three
dimensional sphere.

Figure 30 EMBSphere Class Diagram

EMBCylinder
This class represents a cylinder shape. It holds all the information necessary to represent a three
dimensional cylinder.

Figure 31 EMBCylinder Class Diagram

EMBTerrain
This class represents a terrain for the environment. It will consist of an elevation map and a
collection of coordinates. The elevation map will specify the height of all the desired locations.
The terrain will be represented by strips of triangles.

 25

Figure 32 EMBTerrain Class Diagram

EMBObjectLibrary
This class will hold all the EMBObjects that are saved to the object library.

Figure 33 EMBObjectLibrary Class Diagram

EMBTerrainLibrary
This class will hold all the EMBTerrains that are saved to the object library.

 26

Figure 34 EMBTerrainLibrary Class Diagram

Sequence Diagrams
The following sequence diagrams show some of the main functions that the Environment Model
Builder will perform

Opening a Saved Environment
The following sequence diagram show the sequence of actions involved in reading in a saved
environment.

 : User : EMBController

 : EMBModel

open

parseXML

addObject

addTerrain

Figure 35 Sequence Diagram for Opening an Environment

 27

Adding a Terrain to the Building Surface
The following sequence diagram shows searching for a terrain and then adding it to the building
surface.

 : User : EMBTerrainFinder : EMBObjectView : EMBTerrainPreview : EMBModel : EMBTerrainLibrary

double click

clearView

add

click add button

addToModel

addTerrain

Figure 36 Sequence Diagram for Adding a Terrain

Adding a Object to the Building Surface
The following sequence diagram shows searching for an object and then adding it to the building
surface.

 : User : EMBObjectFinder : EMBObjectView : EMBObjectPreview : EMBModel : EMBObjectLibrary

double click

clearView

addCube

click add button

addToModel

addObject

Figure 37 Sequence Diagram for Adding an Object

Environment Object Builder
The Environment Object Builder is a graphical tool for building complex shapes/object from
primitive shapes. The tool will have three drawing surfaces representing a two dimensional view
from the top, side, and front. The user will be able to move and resize the primitive shape from
any of the three drawing surfaces. There will also be a three dimensional view provided to
observe the created object in 3D. Finally there will be a XML view to show the textual

 28

description of object. The following sections will describe the packages of the Environment
Object Builder

Package View

EOB Application

EOB Controller

EOB View

EOB Model

Figure 38 EOB Package View

Application Package

EOBApplication

Figure 39 EOB Application Package

Class Descriptions and Diagrams

EOBApplication
This class is just intended to have the main method for this program and create the EOBController
and set it visible.

Figure 40 EOBApplication Class Diagram

 29

Controller Package

EOBController EOBBoxPropertiesWindow

EOBConePropertiesWindow

EOBCylinderPropertiewWindow

EOBSpherePropertiesWindow

EOBFrontMouseHandler

EOBSideMouseHandler

EOBTopMouseHandler

Figure 41 EOB Controller Package

Class Descriptions and Diagrams

EOBController
This class is the main frame of the application. It will handle all the menu item actions. It is
responsible for loading files, saving files to disk, and saving EOBObjects to the library.

 30

Figure 42 EOBController Class Diagram

EOBBoxPropertiesWindow
This class provides a JDialog window with controls for modifying a EOBBox.

 31

Figure 43 EOBBoxPropertiesWindow Class Diagram

EOBConePropertiesWindow
This class provides a JDialog window with controls for modifying a EOBCone.

 32

Figure 44 EOBConePropertiesWindow

EOBCylinderPropertiesWindow
This class provides a JDialog window with controls for modifying a EOBCylinder.

 33

Figure 45 EOBCylinderPropertiesWindow Class Diagram

EOBFrontMouseHandler
This class is responsible for handling mouse events for the front building surface. In particular it
will wait for mouse clicks and determine if one of the objects was clicked on. If an object is
clicked on it will provide a properties window for that object.

Figure 46 EOBFrontMouseHandler Class Diagram

EOBSideMouseHandler
This class is responsible for handling mouse events for the side building surface. In particular it
will wait for mouse clicks and determine if one of the objects was clicked on. If an object is
clicked on it will provide a properties window for that object.

 34

Figure 47 EOBSideMouseHandler Class Diagram

EOBSpherePropertiesWindow
This class provides a JDialog window with controls for modifying a EOBSphere.

Figure 48 EOBSpherePropertiesWindow Class Diagram

EOBTopMouseHandler
This class is responsible for handling mouse events for the top building surface. In particular it
will wait for mouse clicks and determine if one of the objects was clicked on. If an object is
clicked on it will provide a properties window for that object.

Figure 49 EOBTopMouseHandler Class Diagram

 35

View Package

EOBObjectFinder EOBObjectView

EOBFrontDrawingView

EOBObjectPreview

1 +finder1 1+view 1 EOBSideDrawingView

EOBTopDrawingView

EOBThreeDimensionalView

EOBDrawingView
1

+front

1

1
+preview

1

1 +side1

1+top 1

EOBView

1
+threeD

1

1+canvas 1

EOBXMLView

1

+xml

1

Figure 50 EOB View Package

Class Descriptions and Diagrams

EOBView
This class is a container for the EOBThreeDimensionalView, EOBDrawingView, and
EOBXMLView.

Figure 51 EOBView Class Diagram

EOBThreeDimensionalView
This class will show the three dimensional view of the current EOBObject. From this view the
user will be able to view the EOBObject from any angle.

 36

Figure 52 EOBThreeDimensionalView Class Diagram

EOBDrawingView
This class is the container for the EOBTopDrawingView, EOBSideDrawingView,
EOBFrontDrawingView, and EOBObjectPreview.

Figure 53 EOBDrawingView Class Diagram

EOBXMLView
This class is responsible for displaying the XML definition of the current EOBObject. The XML
will represent the contents that will be saved to disk.

Figure 54 EOBXMLView Class Diagram

 37

EOBSideDrawingView
This class is responsible for providing a drawing surface for EOBBasicShapes. This view will
represent the side view. The user will be able to move and change the properties of the
EOBBasicShapes from this view.

Figure 55 EOBSideDrawingView Class Diagram

EOBFrontDrawingView
This class is responsible for providing a drawing surface for EOBBasicShapes. This view will
represent the front view. The user will be able to move and change the properties of the
EOBBasicShapes from this view.

Figure 56 EOBFrontDrawingView Class Diagram

EOBTopDrawingView
This class is responsible for providing a drawing surface for EOBBasicShapes. This view will
represent the top view. The user will be able to move and change the properties of the
EOBBasicShapes from this view.

Figure 57 EOBTopDrawingView Class Diagram

 38

EOBObjectPreview
This class is the container for the EOBObjectFinder and EOBObjectView. It will also add the
currently selected EOBBasicShapes to the EOBSideDrawingView, EOBFrontDrawingView, and
EOBTopDrawingView.

Figure 58 EOBObjectPreview Class Diagram

EOBObjectFinder
This class is responsible for providing a list of all available EOBObjects in the EOBObjectLibrary
for the user to select.

Figure 59 EOBObjectFinder Class Diagram

EOBObjectView
This class is responsible for providing a thumb-nail view of the currently selected EOBObject.

 39

Figure 60 EOBObjectView Class Diagram

Model Package

EOBBox
EOBCone

EOBCylinderEOBSphere

EOBBasicShapeEOBModel

EOBObjectLibrary

EOBObject
1 1..n1

+shapes

1..n1 11

+object

1

1

1..n

1

+objects

1..n

Figure 61 EOB Model Package

Class Descriptions and Diagrams

EOBModel
This class is responsible for holding the current EOBObject that is being built and making it
available to other classes.

 40

Figure 62 EOBModel Class Diagram

EOBObject
This class is a collection of EOBBasicShapes that are to be used in the environment. It is also
responsible for building its XML definition

Figure 63 EOBObject Class Diagram

EOBBasicShape
This class is the super class for the primitive shapes; EOBBox, EOBCone, EOBSphere, and
EOBCylinder. It is responsible for building the XML definition for the primitive shapes.

 41

Figure 64 EOBBasicShape Class Diagram

 42

EOBBox
This class represents a box shape. It holds all the information necessary to represent a three
dimensional box shape.

Figure 65 EOBBox Class Diagram

EOBCone
This class represents a cone shape. It holds all the information necessary to represent a three
dimensional cone.

 43

Figure 66 EOBCone Class Diagram

EOBSphere
This class represents a sphere shape. It holds all the information necessary to represent a three
dimensional sphere.

 44

Figure 67 EOBSphere Class Diagram

EOBCylinder
This class represents a cylinder shape. It holds all the information necessary to represent a three
dimensional cylinder.

 45

Figure 68 EOBCylinder Class Diagram

EOBObjectLibrary
This class will hold all the EOBObjects that are saved to disk.

Figure 69 EOBObjectLibrary Class Diagram

Sequence Diagrams
The following sequence diagrams show some of the main functions that the Environment Object
Builder will perform.

 46

Modifying and Moving a Box Shape
The following sequence diagram show selecting a box and moving it. It also shows selecting a
box and modifying its dimensions.

 : User : EOBFrontMouseHandler : EOBModel

 : EOBBoxPropertiesWindow

 : EOBBox

click on surface

getData

change x coordinate

move

Figure 70 Sequence Diagram for Moving a Box

Environment Terrain Builder
The Environment Terrain Builder is a graphical tool for building surfaces to be used by the
Environment Model Builder. The tool will provide a building surface to allow the user to specify
the elevation of a given region on the surface. The user will also be able to define physical
properties of the surface. A three dimensional view will be provided to observe how the terrain
will look in 3D. Finally a XML view will be provided to give a textual description of the terrain.
The following sections will describe the packages of the Environment Terrain Builder.

 47

Package View

ETB Application

ETB Controller ETB Model

ETB View

Figure 71 ETB Package View

Application Package

ETBApplication

Figure 72 ETB Application Package

Class Descriptions and Diagrams

ETBApplication
This class is just intended to have the main method for this program and create the ETBController
and set it visible.

Figure 73 ETBApplication Class Diagram

Controller Package

ETBController

Figure 74 ETB Controller Package

 48

Class Descriptions and Diagrams

ETBController
This class is the main frame of the application. It will handle all the menu item actions. It is
responsible for loading files, saving files to disk, and saving ETBTerrains to the library.

Figure 75 ETBController Class Diagram

 49

View Package

ETBThreeDimensionalView

ETBXMLView

ETBTerrainFinder

ETBTerrainView

ETBView

1 +threeD1 1

+xml

1

ETBTerrainPreview

1+finder 1
1

+view
1

ETBDrawingView
1+canvas 1

1
+preview

1
ETBBuildingSurface

1
+builder

1

Figure 76 ETB View Package

Class Descriptions and Diagrams

ETBView
This class is a container for the ETBThreeDimensionalView, ETBDrawingView, and
ETBXMLView.

Figure 77 ETBView Class Diagram

ETBThreeDimensionalView
This class will show the three dimensional view of the current ETBTerrain. From this view the
user will be able to view the ETBTerrain from any angle.

 50

Figure 78 ETBThreeDimensionalView Class Diagram

ETBXMLView
This class is responsible for displaying the XML definition of the current ETBTerrain. The XML
will represent the contents that will be saved to disk.

Figure 79 ETBXMLView Class Diagram

ETBDrawingView
This class is a container for the ETBBuildingSurface and ETBTerrainPreview.

Figure 80 ETBDrawingView Class Diagram

 51

ETBBuildingSurface
This class is responsible for providing a surface to create an ETBTerrain. It will provide the user
an interface to specify the elevation of sections of the ETBTerrain.

Figure 81 ETBBuildingSurface Class Diagram

ETBTerrainPreview
This class is a container for the ETBTerrainView and ETBTerrainFinder. It will provide the
ability to add the currently selected ETBTerrain to the ETBBuildingSurface.

Figure 82 ETBTerrainPreview Class Diagram

ETBTerrainFinder
This class is responsible for providing a list of all available ETBTerrains in the
ETBTerrainLibrary for the user to select.

 52

Figure 83 ETBTerrainFinder Class Diagram

ETBTerrainView
This class is responsible for providing a thumb-nail view of the currently selected ETBTerrain.

Figure 84 ETBTerrainView Class Diagram

Model Package

ETBModel

ETBTerrainLibrary

ETBTerrain
1 11

+terrain

1

1

1..n

1

+terrains 1..n

Figure 85 ETB Model Package

 53

Class Descriptions and Diagrams

ETBModel
This class is responsible for holding the current ETBTerrain that is being built and making it
available to other classes.

Figure 86 ETBModel Class Diagram

ETBTerrain
This class represents a terrain for the environment. It will consist of an elevation map and a
collection of coordinates. The elevation map will specify the height of all the desired locations.
The terrain will be represented by strips of triangles.

 54

Figure 87 ETBTerrain Class Diagram

ETBTerrainLibrary
This class will hold all the EOBTerrains that are saved to disk.

Figure 88 ETBTerrainLibrary Class Diagram

Sequence Diagrams
The following sequence diagram shows the main function of the Environment Terrain Builder.

 55

Modifying the Elevation of a Section of the Terrain
The following sequence diagram shows how a user would set the elevation for a section of the
terrain.

 : User : ETBBuildingSurface : ETBModel : ETBTerrain : ETBDrawingView

updatePoint

updatePoint

set height

click grid point

Figure 89 Sequence Diagram for Modifying the Terrain

Formal Specification for the Environment Model Builder
The formal specification is limited to the Environment Model Builder.

USE Model

model emb

--
CLASSES
--

class Point2d
end

class Point3d
end

class File
end

class Shape3D
end

--
APPLICATION PACKAGE
--

class EMBApplication
operations

 56

inti()
end

--
CONTROLLER PACKAGE
--

class EMBController
operations
save(f : File)
open(f : File)
exportXML()
parseXML()
setZoomFactor()
end

--
VIEW PACKAGE
--

class EMBView
end

class EMBThreeDimensionalView
operations
add(s : Shape3D)
end

class EMBXMLView
operations
showXML()
end

class EMBDrawingView
end

class EMBBuildingSurface
operations
paint()
zoomOut()
zoomIn()
select(p : Point2d)
end

class EMBObjectPreview
operations
addObject()
end

class EMBObjectView
operations
display(s : Shape3D)
end

 57

class EMBObjectFinder
operations
searchDB()
getCurrent() : EMBObject
select()
end

class EMBTerrainPreview
operations
addTerrain()
end

class EMBTerrainView
operations
display(s : Shape3D)
end

class EMBTerrainFinder
operations
searchDB()
getCurrent() : EMBTerrain
select()
end

--
MODEL PACKAGE
--

class EMBEnvironmentLibrary
operations
getData() : Set(EMBEnvironment)
addData(e : EMBEnvironment)
end

class EMBObjectLibrary
operations
getData() : Set(EMBObject)
addData(o : EMBObject)
end

class EMBTerrainLibrary
operations
getData() : Set(EMBTerrain)
addData(t : EMBTerrain)
end

class EMBModel
operations
getData() : EMBEnvironment
addObject(o : EMBObject)
addTerrain(t : EMBTerrain)
deleteObject(o : EMBObject)
deleteTerrain(t : EMBTerrain)
end

 58

class EMBEnvironment
attributes
name : String
operations
writeXML() : String
addObject(o : EMBObject)
addTerrain(t : EMBTerrain)
deleteObject(o : EMBObject)
deleteTerrain(t : EMBTerrain)
end

class EMBTerrain
attributes
name : String
operations
getHeight(x : Real, z : Real) : Real
writeXML() : String
end

class EMBObject
attributes
name : String
x : Real
y : Real
z : Real
length : Real
width : Real
height : Real
operations
writeXML() : String
addShape(s : EMBBasicShape)
move(p : Point3d)
end

class EMBBasicShape
attributes
name : String
x : Real
y : Real
z : Real
operations
writeXML() : String
end

class EMBBox < EMBBasicShape
attributes
length : Real
width : Real
height : Real
end

class EMBCylinder < EMBBasicShape
attributes
height : Real
radius : Real
end

 59

class EMBCone < EMBBasicShape
attributes
height : Real
radius : Real
end

class EMBSphere < EMBBasicShape
attributes
radius : Real
end

--
ASSOCIATIONS
--

--
VIEW PACKAGE
--

association ThreeD between
EMBView[1]
EMBThreeDimensionalView[1] role threeD
end

association Canvas between
EMBView[1]
EMBDrawingView[1] role canvas
end

association XML between
EMBView[1]
EMBXMLView[1] role xml
end

association TerrPreview between
EMBDrawingView[1]
EMBTerrainPreview[1] role terrainPrev
end

association Builder between
EMBDrawingView[1]
EMBBuildingSurface[1] role builder
end

association ObjPreview between
EMBDrawingView[1]
EMBObjectPreview[1] role objectPrev
end

association TerrainList between
EMBTerrainPreview[1]
EMBTerrainFinder[1] role finder
end

 60

association TerrainThumbNail between
EMBTerrainPreview[1]
EMBTerrainView[1] role view
end

association ObjectList between
EMBObjectPreview[1]
EMBObjectFinder[1] role finder
end

association ObjectThumbNail between
EMBObjectPreview[1]
EMBObjectView[1] role view
end

--
MODEL PACKAGE
--

association Model between
EMBModel[1]
EMBEnvironment[1] role environment
end

association EnvDatabase between
EMBEnvironment[1..*] role environments
EMBEnvironmentLibrary[1]
end

association Surface between
EMBEnvironment[1]
EMBTerrain[1] role terrain
end

association Objects between
EMBEnvironment[1]
EMBObject[1..*] role objects ordered
end

association TerrainDatabase between
EMBTerrain[1..*] role terrains
EMBTerrainLibrary[1]
end

association ObjectDatabase between
EMBObject[1..*] role objects
EMBObjectLibrary[1]
end

association Shapes between
EMBObject[1]
EMBBasicShape[1..*] role shapes
end

--

 61

CONSTRAINTS
--

constraints
--
Relations
--

--
Unique names of environments in Environment Library
--
context e : EMBEnvironmentLibrary
inv UniqueNameEnvironmentLibrary:
e.environments->forAll(p1,p2 | p1 <> p2
implies p1.name <> p2.name)

--
--Unique names of objects in Object Library
--
context o : EMBObjectLibrary
inv UniqueNameObjectLibrary:
o.objects->forAll(p1,p2 | p1 <> p2
implies p1.name <> p2.name)

--
--Unique names of terrains in Terrain Library
--
context t : EMBTerrainLibrary
inv UniqueNameTerrainLibrary:
t.terrains->forAll(p1,p2 | p1 <> p2
implies p1.name <> p2.name)

--
--Unique names for all shapes of an object
--
context obj : EMBObject
inv UniqueNameObjectShapes:
obj.shapes->forAll(p1,p2 | p1 <> p2
implies p1.name <> p2.name)

--
--Every box has positive length, width and height
--
context b : EMBBox
inv BoxPositiveLength:
b.length > 0
inv BoxPositiveWidth:
b.width > 0
inv BOXPositiveHeight:
b.height > 0

--
--Every sphere has positive radius
--
context s : EMBSphere
inv SpherePositiveRadius:

 62

s.radius > 0

--
--Every cylinder has positive height and radius
--
context cyl : EMBCylinder
inv CylinderPositiveHeight:
cyl.height > 0
inv CylinderPositiveRadius:
cyl.radius > 0

--
--Every cone has positive height and radius
--
context c : EMBCone
inv ConePositiveHeight:
c.height > 0
inv ConePositiveRadius:
c.radius > 0

--
Operations
--

--Deleting an object must remove it while the other object are unchanged

context EMBEnvironment::deleteObject(o : EMBObject)
pre Current: objects->includes(o)
post Deleted: objects = objects@pre->excluding(o)

--Added objects must be unique

context EMBEnvironment::addObject(o : EMBObject)
pre Current: objects->excludes(o)
post Added: objects = objects@pre->including(o)

--Additional OCL statements at request of Committee

--Elevation adjustment
Context EMBEnvironment::elevationAdj(o:EMBObject)
Post adjusted: o.y = terrain->getHeight(o.x,o.z)

--Shapes with in Object bounds
context o : EMBObject
inv bounds:
shapes->forall(s | (o.x – o.length/2 < s.x < o.x + o.length/2) and (o.y – o.height/2 < s.y <
o.y + o.height/2) and (o.z – o.width/2 < s.z < o.z + o.width/2))

--Move to back
context EMBEnvironment::moveToBack(o:EMBObject)
post back : objects->last = o
post size : objects@pre->asSet() = object->asSet()

 63

Chapter 4. Inspection Checklist

Introduction
The purpose of this document is to provide a checklist for the technical inspectors of the
Environment Model Building Tool. The checklist will be used to document the items which are to
be inspected. The goal of the technical inspection is to aid the developer in checking for
correctness and consistency with the architectural design and formal specification documents.

Items to be Inspected
UML Diagrams
Class diagrams
Sequence diagrams
Class descriptions
Formal Specification
USE model (sections 2.2-2.5 of the Architecture Design were formally specified)

Formal Technical Inspectors
Cem Oguzhan
Kevin Sung

Formal Technical Inspection Checklist

Table 2 Technical Inspection Checklist

Inspection Item Pass/Fail/Partial Comments

1. The symbols used in the class
diagrams conform to the UML
standards

2. The symbols used in the
sequence diagrams conform to the
UML standards

3. The class diagrams have a
corresponding description provide
in the architectural design
document

4. The descriptions of all class
diagrams are clear and makes
sense

5. The messages passed between
objects in the sequence diagrams
can be found in the corresponding
class diagram as public methods

6. All classes in the Environment

 64

Model Builder (sections 2.2-2.5 of
Architecture Design) are found in
the USE model (section 5 of the
Architecture Design)

7. The role names and
multiplicities in the USE model
match with the role names and
multiplicities of the UML
diagrams for the Environment
Model Builder (sections 2.2-2.5 of
Architecture Design)

8. The attributes in the USE model
match with the attributes of the
corresponding class diagrams
(sections 2.2-2.5 of the
Architecture Design)

9. The operations in the USE
model match with the
corresponding methods in the class
diagrams (sections 2.2-2.5 of the
Architecture Design)

Chapter 5. Component Design

Introduction
This document will provide brief descriptions and class diagrams of the applications and classes
for the EMBT. A detail description of the methods and attributes is provided in the Javadoc
documentation.

Environment Model Builder
The Environment Model Builder is a graphical tool to create an environment from a terrain and
objects. The tool will have a building surface to place the terrain and objects. The user will be
able to move the objects to the desired location. There will also be a three dimensional view to
observer what the terrain and objects look like in 3D. The following sections will describe the
different packages of the Environment Model Builder in detail.

Package View

 65

EMB Application

EMB Controller

EMB View

EMB Model

Figure 90 EMB Package View

Application Package

Class Descriptions and Diagrams

EMBApplication
This class is just intended to have the main method for this program and create the EMBController
and set it visible.

Figure 91 EMBApplication Class Diagram

Controller Package

Class Descriptions and Diagrams

EMBController
This class is the main frame of the application. It will handle all the menu item actions. It is
responsible for loading files, saving files to disk, and saving EMBEnvironments to the library.

 66

Figure 92 EMBController Class Diagram

EMBBuildingSurfaceMouseHandler
This class is responsible for handling mouse events for the building surface. In particular it will
wait for mouse clicks and determine if one of the objects was clicked on. If an object is clicked on
it will provide a properties window for that object.

Figure 93 EMBBuildingSurfaceMouseHandler

EMBObjectPropertiesWindow
This class provides the properties window for an object. It will provide controls to move the
object to a new location.

 67

Figure 94 EMBObjectPropertiesWindow Class Diagram

View Package

Class Descriptions and Diagrams

EMBView
This class is a container for the EMBThreeDimensionalView, EMBDrawingView, and
EMBXMLView.

Figure 95 EMBView Class Diagram

EMBThreeDimensionalView
This class will show the three dimensional view of the current EMBEnvironment. From this view
the user will be able to view the EMBEnvironment from any angle.

 68

Figure 96 EMBThreeDimensionalView Class Diagram

EMBXMLView
This class is responsible for displaying the XML definition of the current EMBEnvironment. The
XML will represent the contents that will be saved to disk.

Figure 97 EMBXMLView Class Diagram

EMBDrawingView
This class is a container for the EMBBuildingSurface, EMBTerrainPreview, EMBObjectPreview.

Figure 98 EMBDrawingView Class Diagram

 69

EMBTerrainPreview
This class is a container for the EMBTerrainFinder and EMBTerrainView. It will also add the
currently selected EMBTerrain to the EMBModel.

Figure 99 EMBTerrainPreview Class Diagram

EMBTerrainFinder
This class is responsible for providing a list of all available EMBTerrains in the
EMBTerrainLibrary for the user to select.

Figure 100 EMBTerrainFinder Class Diagram

EMBTerrainView
This class is responsible for providing a thumb-nail view of the currently selected EMBTerrain.

 70

Figure 101 EMBTerrainView Class Diagram

EMBObjectPreview
This class is a container for the EMBObjectFinder and EMBObjectView. It will also add the
currently selected EMBObject to the EMBBuildingSurface and EMBModel.

Figure 102 EMBObjectPreview Class Diagram

EMBObjectFinder
This class is responsible for providing a list of all available EMBObjects in the
EMBObjectLibrary for the user to select.

 71

Figure 103 EMBObjectFinder Class Diagram

EMBObjectView
This class is responsible for providing a thumb-nail view of the currently selected EMBObject.

Figure 104 EMBObjectView Class Diagram

EMBBuildingSurface
This class is responsible for displaying the top 2-D view of the current EMBEnvironment. From
this view the user will be able arrange the objects and terrains that have been added to it. This
view will also allow for removal of terrains and objects.

Figure 105 EMBBuildingSurface Class Diagram

 72

Model Package

Class Descriptions and Diagrams

EMBModel
This class is responsible for holding the current EMBEnvironment that is being built and making it
available to other classes.

Figure 106 EMBModel Class Diagram

EMBEnvironment
This class represents the current environment that is being built. It will be composed of numerous
EMBTerrains and EMBObjects. It will also be responsible for building its XML definition.

Figure 107 EMBEnvironment Class Diagram

EMBObject
This class is a collection of EMBBasicShapes that are to be used in the EMBEnvironment. It is
also responsible for building its XML definition.

 73

Figure 108 EMBObject Class Diagram

EMBBasicShape
This class is the super class for the primitive shapes; EMBBox, EMBCone, EMBSphere, and
EMBCylinder. It is responsible for building the XML definition for the primitive shapes.

 74

Figure 109 EMBBasicShape Class Diagram

EMBBox
This class represents a box shape. It holds all the information necessary to represent a three
dimensional box shape.

Figure 110 EMBBox Class Diagram

 75

EMBCone
This class represents a cone shape. It holds all the information necessary to represent a three
dimensional cone.

Figure 111 EMBCone Class Diagram

EMBSphere
This class represents a sphere shape. It holds all the information necessary to represent a three
dimensional sphere.

Figure 112 EMBSphere Class Diagram

EMBCylinder
This class represents a cylinder shape. It holds all the information necessary to represent a three
dimensional cylinder.

Figure 113 EMBCylinder Class Diagram

EMBTerrain
This class represents a terrain for the environment. It will consist of an elevation map and a
collection of coordinates. The elevation map will specify the height of all the desired locations.
The terrain will be represented by strips of triangles.

 76

Figure 114 EMBTerrain Class Diagram

EMBObjectLibrary
This class will hold all the EMBObjects that are saved to the object library.

Figure 115 EMBObjectLibrary Class Diagram

EMBTerrainLibrary
This class will hold all the EMBTerrains that are saved to the object library.

 77

Figure 116 EMBTerrainLibrary Class Diagram

Environment Object Builder
The Environment Object Builder is a graphical tool for building complex shapes/object from
primitive shapes. The tool will have three drawing surfaces representing a two dimensional view
from the top, side, and front. The user will be able to move and resize the primitive shape from
any of the three drawing surfaces. There will also be a three dimensional view provided to
observe the created object in 3D. Finally there will be a XML view to show the textual
description of object. The following sections will describe the packages of the Environment
Object Builder

Package View

EOB Application

EOB Controller

EOB View

EOB Model

Figure 117 EOB Package View

Application Package

Class Descriptions and Diagrams

EOBApplication
This class is just intended to have the main method for this program and create the EOBController
and set it visible.

 78

Figure 118 EOBApplication Class Diagram

Controller Package

Class Descriptions and Diagrams

EOBController
This class is the main frame of the application. It will handle all the menu item actions. It is
responsible for loading files, saving files to disk, and saving EOBObjects to the library.

Figure 119 EOBController Class Diagram

EOBBoxPropertiesWindow
This class provides a JDialog window with controls for modifying a EOBBox.

 79

Figure 120 EOBBoxPropertiesWindow Class Diagram

EOBConePropertiesWindow
This class provides a JDialog window with controls for modifying a EOBCone.

 80

Figure 121 EOBConePropertiesWindow Class Diagram

EOBCylinderPropertiesWindow
This class provides a JDialog window with controls for modifying a EOBCylinder.

 81

Figure 122 EOBCylinderPropertiesWindow Class Diagram

EOBFrontMouseHandler
This class is responsible for handling mouse events for the front building surface. In particular it
will wait for mouse clicks and determine if one of the objects was clicked on. If an object is
clicked on it will provide a properties window for that object.

Figure 123 EOBFrontMouseHandler Class Diagram

EOBSideMouseHandler
This class is responsible for handling mouse events for the side building surface. In particular it
will wait for mouse clicks and determine if one of the objects was clicked on. If an object is
clicked on it will provide a properties window for that object.

 82

Figure 124 EOBSideMouseHandler Class Diagram

EOBSpherePropertiesWindow
This class provides a JDialog window with controls for modifying a EOBSphere.

Figure 125 EOBSpherePropertiesWindow Class Diagram

EOBTopMouseHandler
This class is responsible for handling mouse events for the top building surface. In particular it
will wait for mouse clicks and determine if one of the objects was clicked on. If an object is
clicked on it will provide a properties window for that object.

Figure 126 EOBTopMouseHandler Class Diagram

 83

View Package

Class Descriptions and Diagrams

EOBView
This class is a container for the EOBThreeDimensionalView, EOBDrawingView, and
EOBXMLView.

Figure 127 EOBView Class Diagram

EOBThreeDimensionalView
This class will show the three dimensional view of the current EOBObject. From this view the
user will be able to view the EOBObject from any angle.

Figure 128 EOBThreeDimensionalView Class Diagram

EOBDrawingView
This class is the container for the EOBTopDrawingView, EOBSideDrawingView,
EOBFrontDrawingView, and EOBObjectPreview.

 84

Figure 129 EOBDrawingView Class Diagram

EOBXMLView
This class is responsible for displaying the XML definition of the current EOBObject. The XML
will represent the contents that will be saved to disk.

Figure 130 EOBXMLView Class Diagram

EOBSideDrawingView
This class is responsible for providing a drawing surface for EOBBasicShapes. This view will
represent the side view. The user will be able to move and change the properties of the
EOBBasicShapes from this view.

Figure 131 EOBSideDrawingView Class Diagram

EOBFrontDrawingView
This class is responsible for providing a drawing surface for EOBBasicShapes. This view will
represent the front view. The user will be able to move and change the properties of the
EOBBasicShapes from this view.

 85

Figure 132 EOBFrontDrawingView Class Diagram

EOBTopDrawingView
This class is responsible for providing a drawing surface for EOBBasicShapes. This view will
represent the top view. The user will be able to move and change the properties of the
EOBBasicShapes from this view.

Figure 133 EOBTopDrawingView Class Diagram

EOBObjectPreview
This class is the container for the EOBObjectFinder and EOBObjectView. It will also add the
currently selected EOBBasicShapes to the EOBSideDrawingView, EOBFrontDrawingView, and
EOBTopDrawingView.

Figure 134 EOBObjectPreview Class Diagram

 86

EOBObjectFinder
This class is responsible for providing a list of all available EOBObjects in the EOBObjectLibrary
for the user to select.

Figure 135 EOBObjectFinder Class Diagram

EOBObjectView
This class is responsible for providing a thumb-nail view of the currently selected EOBObject.

Figure 136 EOBObjectView Class Diagram

Model Package

Class Descriptions and Diagrams

EOBModel
This class is responsible for holding the current EOBObject that is being built and making it
available to other classes.

 87

Figure 137 EOBModel Class Diagram

EOBObject
This class is a collection of EOBBasicShapes that are to be used in the environment. It is also
responsible for building its XML definition

Figure 138 EOBObject Class Diagram

EOBBasicShape
This class is the super class for the primitive shapes; EOBBox, EOBCone, EOBSphere, and
EOBCylinder. It is responsible for building the XML definition for the primitive shapes.

 88

Figure 139 EOBBasicShape Class Diagram

 89

EOBBox
This class represents a box shape. It holds all the information necessary to represent a three
dimensional box shape.

Figure 140 EOBBox Class Diagram

EOBCone
This class represents a cone shape. It holds all the information necessary to represent a three
dimensional cone.

 90

Figure 141 EOBCone Class Diagram

EOBSphere
This class represents a sphere shape. It holds all the information necessary to represent a three
dimensional sphere.

 91

Figure 142 EOBSphere Class Diagram

EOBCylinder
This class represents a cylinder shape. It holds all the information necessary to represent a three
dimensional cylinder.

 92

Figure 143 EOBCylinder Class Diagram

EOBObjectLibrary
This class will hold all the EOBObjects that are saved to disk.

Figure 144 EOBObjectLibrary Class Diagram

Environment Terrain Builder
The Environment Terrain Builder is a graphical tool for building surfaces to be used by the
Environment Model Builder. The tool will provide a building surface to allow the user to specify
the elevation of a given region on the surface. The user will also be able to define physical
properties of the surface. A three dimensional view will be provided to observe how the terrain

 93

will look in 3D. Finally a XML view will be provided to give a textual description of the terrain.
The following sections will describe the packages of the Environment Terrain Builder.

Package View

ETB Application

ETB Controller ETB Model

ETB View

Figure 145 ETB Package View

Application Package

Class Descriptions and Diagrams

ETBApplication
This class is just intended to have the main method for this program and create the ETBController
and set it visible.

Figure 146 ETBApplication Class Diagram

Controller Package

Class Descriptions and Diagrams

ETBController
This class is the main frame of the application. It will handle all the menu item actions. It is
responsible for loading files, saving files to disk, and saving ETBTerrains to the library.

 94

Figure 147 ETBController Class Diagram

View Package

Class Descriptions and Diagrams

ETBView
This class is a container for the ETBThreeDimensionalView, ETBDrawingView, and
ETBXMLView.

Figure 148 ETBView Class Diagram

 95

ETBThreeDimensionalView
This class will show the three dimensional view of the current ETBTerrain. From this view the
user will be able to view the ETBTerrain from any angle.

Figure 149 ETBThreeDimensionalView

ETBXMLView
This class is responsible for displaying the XML definition of the current ETBTerrain. The XML
will represent the contents that will be saved to disk.

Figure 150 ETBXMLView Class Diagram

ETBDrawingView
This class is a container for the ETBBuildingSurface and ETBTerrainPreview.

 96

Figure 151 ETBDrawingView Class Diagram

ETBBuildingSurface
This class is responsible for providing a surface to create an ETBTerrain. It will provide the user
an interface to specify the elevation of sections of the ETBTerrain.

Figure 152 ETBBuildingSurface Class Diagram

ETBTerrainPreview
This class is a container for the ETBTerrainView and ETBTerrainFinder. It will provide the
ability to add the currently selected ETBTerrain to the ETBBuildingSurface.

 97

Figure 153 ETBTerrainPreview Class Diagram

ETBTerrainFinder
This class is responsible for providing a list of all available ETBTerrains in the
ETBTerrainLibrary for the user to select.

Figure 154 ETBTerrainFinder

ETBTerrainView
This class is responsible for providing a thumb-nail view of the currently selected ETBTerrain.

 98

Figure 155 ETBTerrainView Class Diagram

Model Package

Class Descriptions and Diagrams

ETBModel
This class is responsible for holding the current ETBTerrain that is being built and making it
available to other classes.

Figure 156 ETBModel Class Diagram

ETBTerrain
This class represents a terrain for the environment. It will consist of an elevation map and a
collection of coordinates. The elevation map will specify the height of all the desired locations.
The terrain will be represented by strips of triangles.

 99

Figure 157 ETBTerrain Class Diagram

ETBTerrainLibrary
This class will hold all the EOBTerrains that are saved to disk.

Figure 158 ETBTerrainLibrary Class Diagram

 100

Chapter 6. XML Definition

Introduction
This document will describe the XML definitions for the file formats of each of the tools for the
EMBT.

XML Definition for Object Builder
<?xml version="1.0"?>
<!DOCTYPE object [
<!ELEMENT object (name,x,y,z,shape*)>
<!ELEMENT shape (*primative)>
<!ELEMENT primative (sphere|box|cone|cylinder)>
<!ELEMENT sphere (name,x,y,z,direction,radius,color,hot,stationary,weight)>
<!ELEMENT box (name,x,y,z,direction,color,length,width,height,hot,stationary,weight)>
<!ELEMENT cone (name,x,y,z,direction,radius,height,color,hot,stationary,weight)>
<!ELEMENT cylinder (name,x,y,z,direction,radius,height,color,hot,stationary,weight)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>
<!ELEMENT radius (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT width (#PCDATA)>
<!ELEMENT height (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT direction (#PCDATA)>
<!ELEMENT hot (#PCDATA)>
<!ELEMENT stationary (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
]>

PCDATA Descriptions
x – an integer that represents the x-axis coordinate (note for the object the x coordinate is absolute
while the primitive x coordinate is relative to the object)

y – an integer that represents the y-axis coordinate (note for the object the y coordinate is absolute
while the primitive y coordinate is relative to the object)

z – an integer that represents the z-axis coordinate (note for the object the z coordinate is absolute
while the primitive z coordinate is relative to the object)

radius – a double that represents the radius of the shape measured in meters

color – a string the represents the color of the shape, it will be in the form of “r g b” (e.g. “0.0 1.0.
0.0”.

length – a double that represents the length of the shape measured in meters

width – a double that represents the width of the shape measured in meters

height – a double that represents the height of the shape measured in meters

name – a string that represents the id of the shape or object

 101

direction – a double that represents the number of radians that the shape is rotated around the y-
axis

hot – a double that represents the temperature of the shape

stationary – a double that indicates if the object can move or not (0.0 not stationary 1.0 stationary)

weight – a double that indicates the weight of the shape

XML Definition for Terrain Builder
<?xml version="1.0"?>
<!DOCTYPE terrain [
<!ELEMENT terrain (name,num-points,points-per-row,size,*point)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT num-points (#PCDATA)>
<!ELEMENT points-per-row (#PCDATA)>
<!ELEMENT size (x-min,x-max,y-min,y-max)>
<!ELEMENT x-min (#PCDATA)>
<!ELEMENT x-max (#PCDATA)>
<!ELEMENT y-min (#PCDATA)>
<!ELEMENT y-max (#PCDATA)>
<!ELEMENT point (index,x,y,z)>
<!ELEMENT index (#PCDATA)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>
]>

PCDATA Descriptions
name – a string that represents the id of the terrain

num-points – a integer that represents to total number of points that make up the point of triangles
of the terrain

points-per-row – a integer that represents how many points per row of triagles

x-min – the minimum x-axis value for the terrain measured in meters

x-max – the maximum x-axis value for the terrain measured in meters

y-min – the minimum y-axis value for the terrain measured in meters

y-max – the maximum y-axis value for the terrain measured in meters

x – an integer that represents the x-axis coordinate of the point

y – an integer that represents the y-axis coordinate of the point

z – an integer that represents the z-axis coordinate of the point

index – an integer that represents the id of a point

 102

XML Definition for Environment Builder
<?xml version="1.0"?>
<!DOCTYPE env-model [
<!ELEMENT env-model (terrain*,object*)>
<!ELEMENT terrain (name,num-points,points-per-row,size,*point)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT num-points (#PCDATA)>
<!ELEMENT points-per-row (#PCDATA)>
<!ELEMENT size (x-min,x-max,y-min,y-max)>
<!ELEMENT x-min (#PCDATA)>
<!ELEMENT x-max (#PCDATA)>
<!ELEMENT y-min (#PCDATA)>
<!ELEMENT y-max (#PCDATA)>
<!ELEMENT point (index,x,y,z)>
<!ELEMENT index (#PCDATA)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>
<!ELEMENT object (name,shape*)>
<!ELEMENT shape (*primative)>
<!ELEMENT primative (sphere|box|cone|cylinder)>
<!ELEMENT sphere (name,x,y,z,direction,radius,color,hot,stationary,weight)>
<!ELEMENT box (name,x,y,z,direction,color,length,width,height,hot,stationary,weight)>
<!ELEMENT cone (name,x,y,z,direction,radius,height,color,hot,stationary,weight)>
<!ELEMENT cylinder (name,x,y,z,direction,radius,height,color,hot,stationary,weight)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>
<!ELEMENT radius (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT width (#PCDATA)>
<!ELEMENT height (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT direction (#PCDATA)>
<!ELEMENT hot (#PCDATA)>
<!ELEMENT stationary (#PCDATA)>
<!ELEMENT weight (#PCDATA)>

]>

PCDATA Descriptions
See sections 2.1 and 3.1 above.

Chapter 7. Software Quality Assurance

Purpose
This document is intended to define the steps that will be taken to ensure the Environment Model
Building Tool will achieve a high level of quality. The required documentation is also defined.

 103

References
Vision Document
Project Plan
IEEE Guide for Software Quality Assurance Planning
IEEE Standard for Software Quality Assurance Planning

Management

Organization

Supervisory Committee:
Dr. Scott DeLoach
Dr. David Gustafson
Dr. William Hsu

Major Professor:
Dr. Scott DeLoach

Developer:
Esteban Guillen

Formal Technical Inspectors:
Cem Oguzhan
Kevin Sung

Responsibilities

Supervisory Committee:
The supervisory committee will be responsible for attending the presentations given by the
developer. Following each presentation the committee members will provide feedback and
suggestions concerning the Environment Model Building Tool project.

Major Professor:
The major professor will be responsible for supervisory committee duties and also meeting with
the developer on a weekly basis to evaluate progress and provide suggestions.

Developer:
The developer is responsible for all documentation and software development tasks for the
Environment Model Building Tool project. The project plan will describe the developer’s tasks to
be completed. The developer will also meet with the major professor on a weekly basis to report
progress.

Formal Technical Inspectors:
The formal technical inspectors will be responsible for a technical review of the architecture
design artifacts and then submitting a report on their findings.

Tasks
All tasks to be performed have been documented in the project plan. A Gantt Chart is included in
the project plan to provide a schedule for each task.

Documentation
All official documentation requirements for MSE students are defined at
http://www.cis.ksu.edu/~sdeloach/mse/portfolio.htm. The documentation will consist of a vision
document, project plan, software quality assurance plan, action items, formal requirements

 104

specification, architecture design, test plan, formal technical inspection, prototype, user manual,
component design, source code, assessment evaluation, project evaluation, references, formal
technical inspection letters. All documentation will be reviewed by the committee members for
final approval.

The all documentation will be posted on the developer’s web site at
http://www.cis.ksu.edu/~ejg3500/embt.

Standards, Practices, Conventions, and Metrics
Documentation Standard – IEEE standards will be used as a guideline to follow.

Coding Standard – The project will use traditional object oriented analysis and design methods.
Recommended Java style guidelines will also be followed.

Metrics – COCOMO will be used to estimate project effort.

Reviews and Audits
The committee members will be conducting reviews of the documentation as well as evaluating
the developer at each presentation. The committee members will also comment on the software
prototype demonstration to suggest changes and additions to the requirements.

Two technical inspectors will evaluate the architecture design artifacts and report on their findings.

Test and Problem Reporting
All tests, along with their results, will be recorded on a time log web page. Unresolved problems
will be reported directly to the committee members.

Tools, Techniques, and Methodologies
The following tools will be used for coding, testing, and documentation.
Eclipse IDE – for coding
Java 1.4.2 – for coding
Java 3D 1.3.1 – for coding
MS Visio – for documentation
USE 2.0.1 – for documentation and testing
JUnit 3.8.1 for unit testing

Code Control
The code will be controlled by a CVS system. The CVS is located at
fingolfin.user.cis.ksu.edu/kdd/cvs.

Deliverables
Phase I:
Vision Document
Project Plan
Demonstration
Software Quality Assurance Plan
Interface Description

Phase II:
Action Items
Vision Document
Project Plan
Formal Requirements Specification

 105

Architecture Design
Test Plan
Formal Technical Inspection
Executable Architecture Prototype

Phase III:
Action Items
User Manual
Component Design
Source Code
Assessment Evaluation
Project Evaluation
References
Formal Technical Inspection Letters

Chapter 8. Test Plan

Test Plan Identifier
EMBT-TP2004

Introduction
This document describes the methods that will be used to test the Environment Model Building
Tool (EMBT). The EMBT is divided into three modes of operation; the Environment Model
Builder, the Environment Object Builder, and the Environment Terrain Builder. The three modes
will be viewed as separate components of the system. Each component will be tested on an
individual basis with respect to the Specific Requirements, which are described in the Vision
document, that relate to them.

Test Items
The following are the components of the EMBT that will be tested

Environment Model Builder
Environment Object Builder
Environment Terrain Builder

Features to Be Tested
The following lists what features of each component that will be tested. The features reference the
Specific Requirements (SR) outlined in the Vision document.

Environment Model Builder
SR1 – Vision document section 3.1.1.1
SR2 – Vision document section 3.1.1.2
SR3 – Vision document section 3.1.1.3
SR4 – Vision document section 3.1.1.4
SR5 – Vision document section 3.1.1.5
SR5.1 – Vision document section 3.1.1.6
SR5.2 – Vision document section 3.1.1.7
SR5.3 – Vision document section 3.1.1.8
SR5.4 – Vision document section 3.1.1.9
SR5.5 – Vision document section 3.1.1.10
SR5.6 – Vision document section 3.1.1.11
SR5.7 – Vision document section 3.1.1.12
SR22 – Vision document section 3.1.4.3

 106

SR23 – Vision document section 3.1.4.4
SR24 – Vision document section 3.1.5.1
SR25 - Vision document section 3.1.5.2
SR26 – Vision document section 3.1.6.1

Environment Terrain Builder
SR6 – Vision document section 3.1.2.1
SR7 – Vision document section 3.1.2.2
SR8 – Vision document section 3.1.2.3
SR9 – Vision document section 3.1.2.4
SR10 – Vision document section 3.1.2.5
SR11 – Vision document section 3.1.2.6
SR21 – Vision document section 3.1.4.2
SR23 – Vision document section 3.1.4.4

Environment Object Builder
SR12 – Vision document section 3.1.3.1
SR13 – Vision document section 3.1.3.2
SR13.1 – Vision document section 3.1.3.3
SR14 – Vision document section 3.1.3.4
SR15 – Vision document section 3.1.3.5
SR16 – Vision document section 3.1.3.6
SR17 – Vision document section 3.1.3.7
SR18 – Vision document section 3.1.3.8
SR18.1 – Vision document section 3.1.3.9
SR19 – Vision document section 3.1.3.10
SR20 – Vision document section 3.1.4.1
SR23 – Vision document section 3.1.4.4

Features Not to Be Tested
Future requirements SR5.5, SR5.6, SR5.7 and SR18.1will not be tested.

Approach
In order to test any feature the EMBT will have to be running a local machine. The features
describe how the user will interact with the system, so the testing will require a tester to interact
with the system in the same way a typical user would. To simulate a typical user’s actions a set of
scenarios will be created which describe a set of actions to take in order to achieve a desired result.
Each action will reflect a feature to be tested. Each component will have a scenario which will
test all its features upon completion.

Item Pass/Fail Criteria
Each action of a scenario will correspond to a test case. A test case will pass if the feature(s)
described by its action are demonstrated by the tester. A test case will fail when a feature cannot
be demonstrated. A scenario passes when all the test cases for its actions have passed. If any of
the test cases for a given scenario fail then the scenario has failed.

Suspension Criteria and Resumption Requirements

Suspension Criteria
Testing will be suspended if a test case fails. That test case will then be logged as “failed” and a
description will be given which will identify at which point the test failed.

 107

Resumption Requirement
Testing will resume if the rest of the test cases within the current scenario can be attempted. It
may be the case that the failed test case will prevent the rest of the test cases from being tested; if
this happens the tester will need to log the reason why each of the remaining test cases could not
be tested, and then the tester will need to start testing the next scenario.

Test Deliverables

Test Log
The Test Log will document all test cases and record if the test case passed or failed. A test case
that fails will have the reasons for failure and suggested solutions documented.

Testing Tasks
To perform the test cases the tester will need to have the EMBT running on a local machine. The
tester should be familiar with how to use the tool. The tester will also need to have the scenarios
and test cases which are to be tested. Finally the tester will need to have the test log to document
each test case.

Scenario for Environment Object Building Tool
The object builder is intended to build object from primitive shapes. For testing the tester will
stack all four types of primitive shapes on top of each other. This collection of primitives will be
saved to the database and then reused to build a new shape. The test cases below will provide a
step by step process for the scenario.

Test Case 1 – Testing SR12 and SR13
Task(s)
Load a cone, sphere, box, and cylinder onto the drawing surfaces.
Verification
The shapes should be visible on the drawing surface.

Test Case 2 – Testing SR17
Task(s)
Resize the box so that each dimension is about 3m.
Resize the cone so that it has a radius of 1.5m and a height of 4m.
Resize the sphere so that is has a radius of 0.5m.
Resize the cylinder so that is radius of 1.5m and a height of 1m.
Verification
Each shape has changed in size.

Test Case 3 – Testing SR15 and SR16
Task(s)
Change the box to red and a weight of 5kg.
Change the cylinder to yellow and a weight of 2kg.
Change the cone to orange and a weight of 4kg.
Change the sphere to blue and a weight of 2kg.
Verification
The box is visibly red and its property box shows a weight of 5kg.
The cylinder is visibly yellow and its property box shows a weight of 2kg.
The cone is visibly orange and its property box shows a weight of 4kg.
The sphere is visibly blue and its property box shows a weight of 2kg.

Test Case 4 – Testing SR18
Task(s)

 108

Position the box in the center of the drawing surfaces and have it sit flat on the surface.
Position the cylinder on top of the box and center the base of the cylinder with the center of the top
of the box.
Position the cone on top of the cylinder with the base of the cone and top of the cylinder centered.
Position the sphere on top of the cone with the bottom of the sphere resting on the top of the cone.
Verification
The shapes are stacked on top of each other at the center of the building surface.

Test Case 5 – Testing SR19
Task(s)
Zoom in and out to check that the primitive shapes sit flush on top of each other.

Verification
When zooming out the shapes on the building surface get smaller.
When zooming in the shapes on the building surface get bigger.

Test Case 6 – Testing SR20 and SR23
Task(s)
Use the 3D view to observe what you have created. View the object from all different angles.
Verification
All the shapes should be visible in 3D.

Test Case 7 – Testing SR14
Task(s)
Save the object to the object database with a name of test-object.
Verification
The saved object should be added to the object finder search feature.

Test Case 8 – Testing SR13.1
Task(s)
Start a new object builder session. The object which was saved from the previous test case should
now be available in the library. Place four of those objects on the drawing surface. Arrange the
four composite objects around the center of the drawing surface. Save this new object as test-
object2.
Verification
The saved object should be added to the object finder search feature.

Scenario for Environment Terrain Building Tool
The terrain builder is intended to provide an interface to create a surface. The surface will be
created by specifying the elevation for regions on the surface. For testing the tester will create a
large hill in the middle of the surface.

Test Case 9 – Testing SR6 and SR7
Task(s)
Select the desired regions of the building surface and specify the elevations. The selected region
should be in the center of the surface and should have a rectangular shaped flat top. The region
should look like a large hill.
Verification
The selected regions should have a change of color to indicate the elevation change.

Test Case 10 – Testing SR9 and SR10
Task(s)
Select the whole hill region and give it a grass surface from the properties window.

 109

Verification
The hill region should be covered with a textured grass surface.

Test Case 11 – Testing SR11
Task(s)
Zoom in and out to observe what you have created.
Verification
When zooming out the objects should get smaller.
When zooming in the objects should get bigger.

Test Case 12 – Testing SR21 and SR23
Task(s)
Use the 3D view to observe what you have created. View the terrain from all different angles.
Verification
The terrain should be visible in 3D and the elevation changes should be clearly seen.

Test Case 13 – Testing SR8
Task(s)
 Save the terrain to the terrain database with the name test-terrain.
Verification
The saved terrain should be added to the terrain finder search feature.

Scenario for Environment Model Building Tool
The model builder is intended to provide an interface to combine terrains and object to form an
environment. The tester will use the test-terrain terrain and the test-object2 object that was
created in the previous scenarios.

Test Case 14– Testing SR1, SR2, SR5.1, SR5.2, SR5.3, and SR5.4
Task(s)
Select the test-terrain from the preview window.
View it in 3D from the 3D preview window.
Add the terrain to the building surface.
Select the test-object2 from the preview window.
View it in 3D from the 3D preview window.
Add 4 of them to the building surface.
Verification
The terrain and objects should be visible on the building surface

Test Case 15– Testing SR2
Task(s)
Position the 4 test-object2 objects at different locations
Verification
The objects have moved from there original location.

Test Case 16– Testing SR3
Task(s)
Select a camera from the object preview window and add it to the building surface. From the
camera properties window position the camera at (10,10,10) and pointing at (5,3,2).
Verification
The camera should be visible on the building surface.

Test Case 17– Testing SR4
Task(s)

 110

Select a light source from the object preview window and add it to the building surface. From the
light source properties window position the light at (100,100,100).
Verification
The new light source can be observed in the 3D view.

Test Case 18– Testing SR22 and SR23
Task(s)
Use the 3D view to observe the environment. View the environment from all different angles.
Verification
The terrain and objects should be visible in the 3D view.

Test Case 19– Testing SR24, SR25, and SR26
Task(s)
Save the environment to the database with name test-environment.
Verification
Exit the current environment builder session and start a new session.
Load the saved environment from the desktop and check to ensure looks correct.

Environment Needs
In order for the EMBT to run the testing system will be running Windows XP or Linux and have
to support Java 1.3.1 or later and Java 3D 1.3.1 or later. It is recommended that the testing system
have a modern video card which supports OpenGL.

Chapter 9. Assessment Evaluation

Introduction
This document presents the results of the functional testing. The Test Case’s are in reference to
the Test Case’s defined in the Test Plan 1.0 from Phase 2.

Reference:
Test Plan 1.0

Test Case Results Summary

Table 3 Test Case Result Summary

Test
Case #

Test Unit SR(‘s) Tested Result/Comments

1 Object Building Tool SR12, SR13 Passed

2 Object Building Tool SR17 Passed

3 Object Building Tool SR15, SR16 Passed

4 Object Building Tool SR18 Passed

5 Object Building Tool SR19 Passed

6 Object Building Tool SR20, SR23 Passed

7 Object Building Tool SR14 Passed

8 Object Building Tool SR13.1 Passed

9 Terrain Building Tool SR6, SR7 Passed

10 Terrain Building Tool SR9, SR10 Untested – Feature not

 111

implemented and it
will be a Future

Requirement

11 Terrain Building Tool SR11 Passed

12 Terrain Building Tool SR21, SR23 Passed

13 Terrain Building Tool SR8 Passed

14 Environment Model Building Tool SR1, SR2, SR5.1,
SR5.2, SR5.3, SR5.4

Passed

15 Environment Model Building Tool SR2 Passed

16 Environment Model Building Tool SR3 Untested – Feature not
implemented and it

will be a Future
Requirement

17 Environment Model Building Tool SR4 Untested – Feature not
implemented and it

will be a Future
Requirement

18 Environment Model Building Tool SR22, SR23 Passed

19 Environment Model Building Tool SR24, SR25, SR26 Passed

Test Case Result Detail

Test Case 1 – Loading Shapes
This test case was successfully passed. All the primitive shapes could be loaded onto the building
surface and were visible.

Test Case 2 – Resizing Shapes
This test case passed. All the primitives were resized by first clicking in the shape to bring up its
properties window, and then using the controls on the properties window the shape could be
resized.

Test Case 3 – Changing the Weight and Color
This test case passed. All the primitives could have their weight and color changed from the
properties window.

Test Case 4 – Moving Shapes
This test case passed. All the primitives could be moved with the x, y, and z controls on the
properties window. The three different viewing perspectives made it easy to line up and stack the
shapes on top of each other.

Test Case 5 – Zooming In and Out
This test case passed. From the 3-D viewing tab the scene could be zoomed in and out by holding
down Alt then left clicking the mouse and then moving the mouse up and down.

Test Case 6 – Viewing in 3-D
This test case passed. From the 3-D viewing tab the scene could viewed from all angles.

 112

Test Case 7 – Saving to Library
This test case passed. Selecting “Save to Library” from the File menu provide a pop-up window
to name the object. After providing a name and clicking the “OK” button the object is saved to the
library and is added to the tree that displays a list of the library of objects.

Test Case 8 – Reusing Saved Objects
This test case passed. The previous saved object was available to add. Four of the objects were
added and moved into position. One improvement would be to have the option to move the added
object as a group. At the time of testing the object could only be moved by moving its primitive
shapes.

Test Case 9 – Modifying Elevation
This test case passed. The tool provided a grid of point to modify. The elevation was adjusted by
a slider bar. The values were form 1-100. After selecting an elevation a point on the grid could be
clicked and its elevation would change to value of the slider bar. The zero elevation points were
black while the higher elevation points were color shades of green; lighter shades of green
represented higher elevations.

Test Case 10 – Setting a Texture
This test case was untested. At the time of testing there was no way to set a texture for a region.
This feature will be future requirement.

Test Case 11 – Zooming In and Out
This test case passed. From the 3-D viewing tab the scene can be zoomed in and out by using the
mouse.

Test Case 12 – Viewing In 3-D
This test case passed. From the 3-D viewing tab the scene could be viewed from any angle.

Test Case 13 – Saving to Library
This test case passed. Selecting “Save to Library” from the File menu provide a pop-up window to
name the terrain. After providing a name and clicking the “OK” button the terrain is saved to the
library and is added to the tree that displays a list of the library of terrains.

Test Case 14 – Adding Objects and Terrains
This test case passed. The terrain and objects were successfully added. One improvement could
be to have an added object sit flush on the surface. At the current time of test the added object was
placed at (0, 0, 0), but the elevation of the terrain was much higher at that point, so the object was
underneath the surface of the terrain.

Test Case 15 – Moving the Objects
This test case passed. The objects were able to be moved by clicking on them, from the building
surface, and using the controls of the provided properties window to move the objects position.

Test Case 16 – Setting the Camera
This test case was untested. This feature will be a future requirement.

Test Case 17 – Setting the lights
This test case was untested. This feature will be a future requirement.

Test Case 18 – Viewing in 3-D
This test case passed. From the 3-D viewing tab the scene could be viewed from any angle.

 113

Test Case 19 – Saving an Opening
This test case passed. The environment was successfully saved and re-opened.

Chapter 10. User’s Manual

Introduction
This document will explain how to set-up and use the Object Building Tool, the Terrain Building
Tool, and the Environment Model Building Tool.

Installation and Set-up

Required Software
Java 1.4.2 or Later (http://java.sun.com/j2se/1.4.2/download.html)
Java 3D 1.3.1 (http://java.sun.com/products/java-media/3D/download.html)
Windows 2000 or Linux or Solaris or MacOS (note Linux and MacOS don’t have an official
version of Java 3D provided by Sun, but ports are available).

Recommended Hardware
X86 compatible processor 1.6 GHz or higher
Video card with Opengl support and 32MB of ram

Required Files
All the code and executables for running the software is included in
“MSE – Esteban Guillen.zip”. To install just unzip to the local machine. The following is a
breakdown of the included files:

MSE – Esteban Guillen - top level directory
|--eob.bat – batch file for starting the Object Building Tool
|--etb.bat – batch file for starting the Terrain Building Tool
|--emb.bat – batch file for starting the Environment Model Building Tool
|--EMBT-0.1 - the eclipse project directory
|--bin –directory contains all the .class files for the project
|--object-lib – directory for the object library
|--terrain-lib – directory for the terrain library
|--doc - directory contains all the Javadoc for the project
|--src – directory contains all the .java files for the project
|--.classpath - eclipse classpath file
|--.project - eclipse project file

Object Building Tool

Running
To start the applications simply double click on the eob.bat file.

Creating a New Object
Once the application is running you can create a new object simply select the New File menu
option. The following screen shows the result of selecting the new File menu option.

 114

Figure 159 Creating a New Object

There are two tabs; one for building the object, the Drawing View, and other for viewing in 3-D,
the 3D View. From the Drawing view we can select objects from the list provided in the Library
Objects window. Selecting is achieved by double clicking on an item in the list. Once an item is
selected it will appear in the preview window next to the list. The following screenshot show the
result of double clicking on the cone list item.

 115

Figure 160 Selecting a Shape from the Library

Once an object is selected it can be added to the drawing surfaces. This is achieved by clicking
the add button under the preview window. Adding an object will place a 2-D representation of
the object in each of the three drawing surfaces. The following screenshot show the result of
adding the cone.

 116

Figure 161 Adding a Cone Shape

Once the object has been added two the three drawing surface it can be modified. This is achieved
by click on the object in any of the three drawing surfaces. Once an object is click a properties
window will be provided to allow the object to be modified. The following screenshot show the
properties window for the cone.

 117

Figure 162 Cone Properties Windw

The properties window will allow you to change the size, location, color, and weight of the cone.
The following screenshot show the result of changing the size to a height of 12, a radius of 2,
location (2, 2, 2), and color (0.56, 0.51, 0).

 118

Figure 163 Modifying a Cone

This object can be viewed in 3-D by clicking on the 3-D View tab. The following screenshot
shows the result of clicking on the 3-D View tab.

 119

Figure 164 Viewing the Cone in 3D

Once the user is done building the object (note that more objects from the library window can be
added) it can be added to the library or saved to disk.

Saving an Object to the Library
At any time the object being built can be added to the library. This is achieved by selecting the
Save to Library File menu option. After selecting this option a pop-up window will be provided
to name the object. After providing the name and clicking the OK button the object will be added
to the list provided in the Library Objects window.

Exporting an Object to Disk
At any time the object being built can be saved to disk in XML format. This is achieved by
selecting the Export to XML File menu option. After selecting this option a save window will be
provided to select the location and name of the file to save. The user should provide a .xml
extension to the file name.

Opening a Saved Object
After starting the application the user can open a previously saved (an XML file) object. This is
achieved by selecting the Open File menu option. After selecting that option an open window
will be provided to select the object to open. After the file is selected and the open button is

 120

clicked that object will be loaded onto the three drawing surfaces. At this point the user has all the
options that were provide when starting a new object like adding more objects and modifying the
ones that are on the drawing surfaces.

Terrain Building Tool

Running
To start the applications simply double click on the etb.bat file.

Creating a New Terrain
Once the application is running you can simply select the New File menu option. After selecting
the new option you will be provided with the following screen shown below.

Figure 165 Creating a New Terrain

The Terrain builder consists of two main tabs. The first is the Building View which consists of a
grid building surface, a height selector, and a preview window. The grid building surface
represents points on the surface that is being build. The building surface is an 11x11grid and
represents the points of a 10x10 grid surface. Each point is 100m apart in the actual terrain. The
points have a color code for representing height. Black represents a height of 0 while light green
represents 100m. Heights in between are represented as shades of green with the darker shades
the lower elevations and the lighter shades representing the higher elevation. To select a height
you just need to move the height selector slider bar in the upper right corner. The selected height
will be displayed just above the center of the slider bar. Once a desired height is selected you can
click on of the grid point, which will raise that point to height indicated by the slider bar. The grid
point will also get colored to the appropriate shade of green. The following figure shows a

 121

screenshot after selecting a height of 65 and then selecting 4 points in the center of the building
surface.

Figure 166 Modifying a Terrain

Clicking on the 3D View tab will show the 3-D view of the terrain as seen below.

 122

Figure 167 Viewing the Terrain in 3D

From the 3D View the raise in elevation can be easily seen. Once the desired terrain has been
created it can be saved to disk as an XML file or saved to the library.

At any point a terrain that has been saved in the library can be added. Doing this will clear any
work that has already been done to that point and load the terrain from the library. Loading from
the library is accomplished by double clicking on one of the items listed in the Library Terrains
window in the Building View tab. After double clicking the list item it will appear in the preview
window to the right. Once the terrain is loading into the preview window it can be added to the
building surface by clicking the add button under the preview window. The following window
shows the result of double clicking terrain-test and adding it to the building surface.

 123

Figure 168 Adding a Terrain from the Library

At this point the terrain can be modified just as before.

Saving a Terrain to the Library
At any time the object being built can be added to the library. This is achieved by selecting the
Save to Library File menu option. After selecting this option a pop-up window will be provided
to name the terrain. After providing the name and clicking the OK button the terrain will be
added to the list provided in the Library Terrains window.

Exporting a Terrain to Disk
At any time the terrain being built can be saved to disk in XML format. This is achieved by
selecting the Export to XML File menu option. After selecting this option a save window will be
provided to select the location and name of the file to save. The user should provide a .xml
extension to the file name.

Opening a Saved Terrain
After starting the application the user can open a previously saved (an XML file) terrain. This is
achieved by selecting the Open File menu option. After selecting that option an open window
will be provided to select the terrain to open. After the file is selected and the open button is
clicked that terrain will be loaded onto the building surface. At this point the user has all the
options that were provide when starting a new terrain.

Environment Model Building Tool

Running
To start the applications simply double click on the emb.bat file.

 124

Creating a New Model
Once the application is running you can simply select the New File menu option. After selecting
the new option you will be provided with the following screen shown below.

Figure 169 Creating a New Envirnment Model

The Environment Model Building tool consists of two main tabs; the Drawing View and the 3D
View. The Drawing view provides a top view of the locations of the added objects. The 3D View
provides a 3-D view of the added objects and terrain. In the Drawing View objects and terrains
are added in the same manner as in the Object Builder and Terrain Builder. When objects are
added they are placed in the center of the building surface grid and are represented as a square
box. When a terrain is added there is nothing shown on the building surface grid, but in the 3D
View the terrain is correctly displayed.

Once an object is added to the building surface it can be moved though the properties window.
The properties window is provided when clicking on an object in the building surface grid. The
following screenshot show the result of adding a tank object and a pit terrain.

 125

Figure 170 Selecting a Object and Terrain

The square box in the center of the building surface grid represents the tank object. The tank can
be moved by clicking on it and using the controls on the properties window. The following
screenshot shows the properties window for the tank.

Figure 171 Object Properties Window

Objects can be moved in any direction. The Y direction is the up direction so it will not show on
the 2-D building surface grid.

 126

The 3D View shows both the added objects and added terrain (currently only one terrain can be
loaded at a time, so adding another terrain will over ride the previous one). The following
screenshot shows the tank object and pit terrain.

Figure 172 Viewing an Environment in 3D

The tank is hard to see because it is so much smaller than the terrain which is 1000x1000m. To
see the tank better you can zoom-in by holding down the Alt key and the dragging the mouse
down while holding down the left button. The following is the result of zoom-in in on the tank.

 127

Figure 173 Zooming-in from the 3D View

Exporting a Model to Disk
At any time the environment model being built can be saved to disk in XML format. This is
achieved by selecting the Export to XML File menu option. After selecting this option a save
window will be provided to select the location and name of the file to save. The user should
provide a .xml extension to the file name.

Opening a Saved Model
After starting the application the user can open a previously saved (an XML file) environment
model. This is achieved by selecting the Open File menu option. After selecting that option an
open window will be provided to select the environment model to open. After the file is selected
and the open button is clicked that environment model will be loaded onto the building surface.
At this point the user has all the options that were provide when starting a new environment
model.

 128

Chapter 11. Project Evaluation

Introduction
This document will present a summary of my experiences encountered throughout my MSE
project.

Problems Encountered
This section describes some of my biggest problems encountered during my MSE project.

Understanding Project Goals
One of the first problems I had was to fully understand the goals of this project. At a very high
level the project was easy to understand, but once I started to think about some of the details I
discovered I needed to ask more questions.

After I got a decent understanding of the project goals my next major problem was visualizing
how the user would interact with the application. The project was very graphical and has a lot of
user interaction, which made the graphical user interface one of the most important parts of the
project. I would say designing the user interface was the most challenging parts of the project.

Learning Java3D
The Java 3D part of the project posed problems in the beginning. I had a great deal of trouble
finding good examples of Java 3D. The Java 3D web site had some information but it was very
out of date. After many hours of searching the web I found a few good examples to get me
started. I also purchased “Java 3D API Jump-Start”. It is a must read for beginner Java 3D
programmers.

Balancing Work
The size of this project grew very quickly. At the end there were 3 different stand alone programs.
I found it difficult to manage my time between the 3 programs. I always felt like I was neglecting
some part of the project.

Features to Implement
As mentioned above the project grew very quickly and new feature were constantly being
discussed. One of the design goals was to “think big”, that is to think of all the possible features
that would be nice to have. It wasn’t practical to implement all the features for my MSE project,
so I had to decide which features to implement. In the end my objective was to keep things simple
and get everything to work. This approach only allowed about 75% of the features to be
implemented, but those that were implemented were done with great care.

Source Lines of Code
The first estimate for SLOC was made during Phase 1 and it was estimated to be 2500 SLOC.
This estimate was driven from the current prototype and similar examples. I believe this estimate
was low because I didn’t have a full understanding of all the features that would be implemented.
That estimate was also low because at that point in the project I was planning on just having one
large application as opposed to the 3 application that were developed. The next estimate was in
Phase 1 and it was estimated to be 4800 SLOC. This estimate was driven from the executable
prototype. The executable prototype gave me a better idea of what features would be implemented
and how much code it would take to implement those features. The 4800 SLOC was a reasonable
estimate to the actual 5372 SLOC.

The following is a break down of the SLOC required for each application.

Environment Model Builder = 2237
Environment Object Builder = 2315

 129

Environment Terrain Builder = 820
Total = 5372 source lines of code

Project Duration
The following table show the expected vs. actual completion times for each phase of the project

Table 4 Project Duration

 Expected Finish Time Actual Finish Time
Phase 1 January 28, 2004 March 17, 2004

Phase 2 May 21, 2004 June 9, 2004

Phase 3 August 15, 2004 July 21, 2004

Both Phase 1 and Phase 2 were delayed. This was due to lack of preparation of the required
documents and code. The delay in Phase 1 was mostly because of the prototype. I wasn’t happy
with the interface at the end of January, so I waited until March when I was more comfortable
with the prototype. The delay in Phase 2 was mainly due to the extended time the Architecture
Design took me. It was also delayed because my CIS 844 final project took up much of my time
at the end of the semester. Phase 3 was moved up a few weeks. This was driven by the fact that I
needed to have my graduate material turned in by July 30.

The following lists how much time was spent on each Phase.

Phase 1 = 3870 minutes or 65 hours
Phase 2 = 5970 minutes or 100 hours
Phase 3 = 16410 minutes or 273 hours
Total = 438 hours

During Phase 1 using the COCOMO model I estimated that the total project would take 840 hours.
This estimate was almost twice as long as the actual time. The reason for the over estimate was
that COCOMO assumes the project is a large industrial strength project. This assumption adds
time for integration testing and interaction between team members. My project was small and
didn’t require heavy interaction with team members.

During Phase 2 using a bottom-up approach to cost estimation I was able to predict the remaining
time for Phase 3 would be 270 hours. This estimate was as close to the actual time of 273 hours
that one could hope for. The bottom-up approach allowed me to measure my productivity up to
that point in the project. My remaining SLOC estimate made during Phase 2 was very close to the
actual and this allowed for my time estimate, which was based of my productivity and remaining
SLOC, to be very accurate.

The following chart breaks down how much time was spent on each phase.

 130

Time For Each Phase

Phase 1, 3870, 15%

Phase 2, 5970, 23%
Phase 3, 16410, 62%

Phase 1
Phase 2
Phase 3

Figure 174 Phase Time Breakdown

The following chart breaks down how much time was spent doing coding, design, documentation,
and meetings for Phase 1.

Phase 1 Break Down

Documentation, 1380,
36%

Meetings, 150, 4%

Coding, 2000, 53%

Design, 280, 7%

Documentation
Coding
Meetings
Design

Figure 175 Phase 1 Breakdown

The following chart breaks down how much time was spent doing coding, design, documentation,
and meetings for Phase 2.

 131

Phase 2 Break Down

Documentation, 2010,
32%

Coding, 2010, 32%

Design, 2040, 32%

Meetings, 270, 4%

Coding
Design
Documentation
Meetings

Figure 176 Phase 2 Breakdown

The following chart breaks down how much time was spent doing coding, design, documentation,
and meetings for Phase 3.

Phase 3 Break Down

Coding, 5000, 56%
Documentation, 3300,

37%

Meetings, 150, 2%
Design, 460, 5%

Coding
Documentation
Design
Meetings

Figure 177 Phase 3 Breakdown

 132

Lessons Learnt
This project was a great learning experience for me. I got a taste of what it is like to work on a
large project. One of the most valuable lessons I learned was to make your best effort to fully
understand what you are trying to build. I found that at some points in the project I had to stop
coding and think about design issues. This caused me some frustration as I like to focus on one
part of the project as opposed to switching back and forth between designs and coding. I also got
the chance to work in a group project setting. Any chance I get to work in a group is beneficial
since I will be working in a group setting for the rest of my career. The most valuable lesson I
will take away from this project is how thinking through the design will make you think more
deeply about what you are building. To be more specific I thought my design was almost
complete with just class diagrams. I thought I had a good understanding of how the project would
be implemented. But when I started creating a few sequence diagrams I realized I needed to take
some more time to think about how the objects would interact.

Future Work
Not all the features described in the Vision Document were implemented in this project. The
remaining features will be implemented as future CIS 690 project or maybe a MS project. The
following documents what feature remain to be implemented.

Robot Builder (New Application/Mode)
There is a need for an application to build the actual robots the run in the simulation. This could
be a new application or a running mode of the Object Builder. This application would be very
similar to the Object Builder, but would need to be tailored to robot specific requirements. The
Robot Builder would require new primitive shapes. This could simply be accomplished with
wrapping a tag around the current primitives (box, cone, sphere, and cylinder). For example a
sensor could be a new primitive and implemented as just a standard box with a sensor tag wrapped
around its XML definition. The sensor primitive would also need additional attributes which are
specific to the properties of the sensor. Those attributes would also be included in the XML
definition.

Object Builder
• Moving objects as a group (a select feature).
• Making objects a hierarchy of objects instead of just a collection of primitives.
• Making the building surfaces scrollable to allow for bigger objects to be created.
• Adding the ability to rotate primitive shapes.
• Improving the search feature.
• Adding a zoom-in and zoom-out feature to the 2D building surfaces.
• Being able to set the bounding volume for the object being built (will help with collision

detection).

Terrain Builder
• Having the ability to add a texture surface to a region of the terrain (e.g., grassy, rocky,

etc.).
• Being able to set the size of the terrain being built instead of having just a default

1000x1000 size.
• Improving the search feature.

Environment Builder
• Making the building surface scrollable to allow for bigger models to be built.
• Allow multiple terrains to be placed on a model instead of the current limit to 1 terrain.
• Have a feature to dynamically place all objects on the top of the surface at their location.
• Being able to set the size of the model being built instead of having just a default

1000x1000 size.

 133

• Adding a mouse over feature on the building surface to identify objects.
• Improving the search feature.

References
[1] Davison, Andrew. Game Programming With Java and Java 3D.

http://fivedots.coe.psu.ac.th/~ad/jg/: 2004

[2] Fowler, Martin. UML Distilled Third Edition. Boston: Addison-
Wesley, 2004.

[3] Horton, Ivor. Java 2 SDK 1.4 Edition. Plainview: Wrox Press, 2002.

[4] Lee, Richard & Tepfenhart, William. Practical Object-Oriented Development

With UML and Java. Upper Saddle River: Prentice Hall, 2002.

[5] Royce, Walker. Software Project Management. Upper Saddle River:

Addison-Wesley, 1998.

[6] Walsh, Aaron & Gehringer, Doug. Java 3D API Jump-Start. Upper Saddle

River: Prentice Hall, 2002.

 134

